Initial settings of the EPR-MOGA analysis and the data overview
Parameters . | EPR-MOGA setting . | ||
---|---|---|---|
Case 1: Mean temperature . | Case 2: Temperature half-thickness . | Case 3: Spread of jet across the channel . | |
Regression type | Linear regression | ||
Polynomial structure | ![]() | ||
Inner function type | No function | ||
Constant estimation method | Least square | ||
Range of exponents | [−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2] | ||
Maximum number of terms | [1:100] | [1:30] | [1:30] |
Number of data | 1,634 | 1,632 | 34 |
Number of training data | 817 | 816 | 17 |
Number of testing data | 817 | 816 | 17 |
Input variables | (x, y, z), R, d, T0 | (x), R, d, T0 | (x,y), R, d, T0 |
Output variables | T | H | S |
Parameters . | EPR-MOGA setting . | ||
---|---|---|---|
Case 1: Mean temperature . | Case 2: Temperature half-thickness . | Case 3: Spread of jet across the channel . | |
Regression type | Linear regression | ||
Polynomial structure | ![]() | ||
Inner function type | No function | ||
Constant estimation method | Least square | ||
Range of exponents | [−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2] | ||
Maximum number of terms | [1:100] | [1:30] | [1:30] |
Number of data | 1,634 | 1,632 | 34 |
Number of training data | 817 | 816 | 17 |
Number of testing data | 817 | 816 | 17 |
Input variables | (x, y, z), R, d, T0 | (x), R, d, T0 | (x,y), R, d, T0 |
Output variables | T | H | S |