Skip to Main Content
Table 1

The brief descriptions about employed metaheuristic algorithms

Algorithm/population typeFirst proposer(s)Operators or control parametersExample referenceEmployed technique, assigned value or formula
GA (real-coded)/chromosomes  Holland (1975), Goldberg (1989)  Selection Peltokangas & Sorsa (2008)  Tournament 
Crossover arithmetical crossover (Pc = 0.5) 
Mutation Equations (3) and (4) (μ = 0.05; Pm = 0.1) 
PSO/particles  Kennedy & Eberhart (1995)  Acceleration coefficient Rathore & Sharma (2017)  c1 = c2 = 2 
Velocity updating Equation (5) 
Inertia weight RW ω = 0.5 + 0.5*rand 
LDW ω = [(itermaxt) (ωmaxωmin)/itermax] + ωmin, t = 1,2,..,itermax 
NLDW ωt = (ωmaxωmin)(itermaxt)3 /itermax3 + ωmin, t = 1,2,..,itermax 
CRW Zi = 4zi−1 (1 − zi−1), ωt = 0.5*rand + 0.5 Zi, t = 1,2,..,itermax 
DEA/chromosomes  Storn & Price (1997)  Mutation Xu et al. (2012)  Equation (6) in which F = 0.5 
Crossover Non-uniform crossover in which Cr = 0.5 
Selection Greedy criterion 
IWA/weed colony  Mehrabian & Lucas (2006)  Initial population Asgari et al. (2016)  Npop, 0 = 5 
Production of seeds Equation (7) in which Seedmin = 1, and Seed max = 5 
Spread of seeds NLDW (same as in PSO) 
Selection Competitive exclusion (weed population size ≤ Npop
ABC/bee colony  Karaboga (2005)  Function of employed bees Karaboga & Basturk (2008)  xneighbor = xold + Δx (similar to the use of Equations (3) and (4)) 
Function of onlooker bees Equation (8) 
Function of scout bees Limit = 0.5*SN *Npar 
Algorithm/population typeFirst proposer(s)Operators or control parametersExample referenceEmployed technique, assigned value or formula
GA (real-coded)/chromosomes  Holland (1975), Goldberg (1989)  Selection Peltokangas & Sorsa (2008)  Tournament 
Crossover arithmetical crossover (Pc = 0.5) 
Mutation Equations (3) and (4) (μ = 0.05; Pm = 0.1) 
PSO/particles  Kennedy & Eberhart (1995)  Acceleration coefficient Rathore & Sharma (2017)  c1 = c2 = 2 
Velocity updating Equation (5) 
Inertia weight RW ω = 0.5 + 0.5*rand 
LDW ω = [(itermaxt) (ωmaxωmin)/itermax] + ωmin, t = 1,2,..,itermax 
NLDW ωt = (ωmaxωmin)(itermaxt)3 /itermax3 + ωmin, t = 1,2,..,itermax 
CRW Zi = 4zi−1 (1 − zi−1), ωt = 0.5*rand + 0.5 Zi, t = 1,2,..,itermax 
DEA/chromosomes  Storn & Price (1997)  Mutation Xu et al. (2012)  Equation (6) in which F = 0.5 
Crossover Non-uniform crossover in which Cr = 0.5 
Selection Greedy criterion 
IWA/weed colony  Mehrabian & Lucas (2006)  Initial population Asgari et al. (2016)  Npop, 0 = 5 
Production of seeds Equation (7) in which Seedmin = 1, and Seed max = 5 
Spread of seeds NLDW (same as in PSO) 
Selection Competitive exclusion (weed population size ≤ Npop
ABC/bee colony  Karaboga (2005)  Function of employed bees Karaboga & Basturk (2008)  xneighbor = xold + Δx (similar to the use of Equations (3) and (4)) 
Function of onlooker bees Equation (8) 
Function of scout bees Limit = 0.5*SN *Npar 

Npop, population size; Npar, number of parameters to be calibrated; itermax, number of generation; rand, uniform random variable between [0, 1]; Pc, crossover probability; Pm, mutation probability; c, acceleration coefficient; ω, inertia weight; RW, random inertia weight; LDW, linear decreasing inertia weight; NLDW, nonlinear decreasing inertia weight; CRW, chaotic random inertia weight; CR, crossover constant in DEA; F, mutation factor in DEA; Npop 0, initial weed colony size in IWA; Seedmin, minimum number of seeds produced; Seedmin, maximum number of seeds produced; SN, number of food sources in ABC; limit, a limit value used in scout bee step of ABC.

Close Modal

or Create an Account

Close Modal
Close Modal