Skip to Main Content
Table 2

Properties of entropy and relative disorder index (DI)

Variable nameMaximum possible value of marginal entropyDescriptionParameter determination methodReferences
Entropy  DI = (maximum possible entropy value under evenly apportioned state) – (actual entropy value obtained for the time series) According to the shape of the distribution of probabilities pi Shannon (1948), Kawachi et al. (2001)  
Marginal entropy (ME) log215 = 3.90 Related DI: marginal disorder index Mishra et al. (2009)  
Apportionment entropy (AE) (log212) = 3.58 Related DI: apportionment disorder index (AE) Mishra et al. (2009)  
Decadal apportionment entropy (DAE) (log210) = 3.32 Related DI: decadal apportionment disorder index (DADI) Mishra et al. (2009)  
Mean disorder index (MDI) – Spatial and temporal mean Mishra et al. (2009)  
Variable nameMaximum possible value of marginal entropyDescriptionParameter determination methodReferences
Entropy  DI = (maximum possible entropy value under evenly apportioned state) – (actual entropy value obtained for the time series) According to the shape of the distribution of probabilities pi Shannon (1948), Kawachi et al. (2001)  
Marginal entropy (ME) log215 = 3.90 Related DI: marginal disorder index Mishra et al. (2009)  
Apportionment entropy (AE) (log212) = 3.58 Related DI: apportionment disorder index (AE) Mishra et al. (2009)  
Decadal apportionment entropy (DAE) (log210) = 3.32 Related DI: decadal apportionment disorder index (DADI) Mishra et al. (2009)  
Mean disorder index (MDI) – Spatial and temporal mean Mishra et al. (2009)  
Close Modal

or Create an Account

Close Modal
Close Modal