Table 3.

Determinants of number of people affected (zero-inflated negative binomial model).

VariableNumber of people affected
NB modelLogit modelNB modelLogit model
(1)(2)(3)(4)
Development indicators 
HDI 2.70 (2.85) 2.26 (4.69) – – 
 −3.10 (3.49) −0.69 (5.45) – – 
Ln(PCNSDPC) – – 11.11 (13.55) 1.03 (25.09) 
 – – −5.91 (6.78) −0.34 (12.55) 
Hazard and risk 
ARAIN 0.001*** (0.0002) – 0.001***  
(0.0002)    
AAREA 9.08*** (1.19) – 9.32***  
(1.27)    
Disaster-specific adaptation measures 
NFY 0.004 (0.062) −0.66*** (0.09) 0.006 (0.07) −0.41*** (0.11) 
DRR 0.05 (0.24) 0.79 (0.41) −0.06 (0.30) 0.45 (0.46) 
Constant 13.12*** (0.63) 1.34 (1.12) 19.98*** (3.33) −1.05 (4.50) 
State effects 
Time effects 
 0.2*** (0.05) 0.204*** (0.050) 
 1.22 (0.06) 1.23 (0.06) 
No. of samples 1,239 1,003 
No. of non-zero samples 748 633 
No. of states 21 17 
Wald  2054.85*** 890.98*** 
Log pseudo likelihood − 11724.43 − 10,102.11 
Vuong test 26.61*** 26.70*** 
VariableNumber of people affected
NB modelLogit modelNB modelLogit model
(1)(2)(3)(4)
Development indicators 
HDI 2.70 (2.85) 2.26 (4.69) – – 
 −3.10 (3.49) −0.69 (5.45) – – 
Ln(PCNSDPC) – – 11.11 (13.55) 1.03 (25.09) 
 – – −5.91 (6.78) −0.34 (12.55) 
Hazard and risk 
ARAIN 0.001*** (0.0002) – 0.001***  
(0.0002)    
AAREA 9.08*** (1.19) – 9.32***  
(1.27)    
Disaster-specific adaptation measures 
NFY 0.004 (0.062) −0.66*** (0.09) 0.006 (0.07) −0.41*** (0.11) 
DRR 0.05 (0.24) 0.79 (0.41) −0.06 (0.30) 0.45 (0.46) 
Constant 13.12*** (0.63) 1.34 (1.12) 19.98*** (3.33) −1.05 (4.50) 
State effects 
Time effects 
 0.2*** (0.05) 0.204*** (0.050) 
 1.22 (0.06) 1.23 (0.06) 
No. of samples 1,239 1,003 
No. of non-zero samples 748 633 
No. of states 21 17 
Wald  2054.85*** 890.98*** 
Log pseudo likelihood − 11724.43 − 10,102.11 
Vuong test 26.61*** 26.70*** 

Note: This model has two equations. Columns 2 and 4 report the logit model estimates of the probability that nobody in a given state in a given year reports loss and damage from floods. Columns 1 and 3 report results from the negative binomial model. Robust standard errors are presented in parentheses. In the case of Vuong test, z-value is reported. Likelihood ratio (LR) test is significant in all the models, indicating that zero-inflated negative binomial is better than zero-inflated Poisson regression. Absence of serial correlation as p-value of Wooldridge test for autocorrelation is insignificant. *** p < 0.01, ** p < 0.05, * p < 0.1.

Source: Authors' computation.

Close Modal

or Create an Account

Close Modal
Close Modal