Table 2

Results of single AI-based models for both case studies for four seasons

Case studySeasonModelModel structureaDC
RMSEb
AIC
CalibrationVerificationCalibrationVerification
Tabriz Spring SVR 0.268-0.125-20 0.901 0.797 0.069 0.091 −0.804 
FFNN 6-8-1 0.876 0.755 0.081 0.098 −0.677 
ANFIS Gaussian-3 0.853 0.729 0.113 0.123 −0.549 
Summer SVR 0.250-0.112-15 0.875 0.783 0.073 0.101 −0.663 
FFNN 6-9-1 0.845 0.737 0.089 0.103 −0.643 
ANFIS Gaussian-3 0.802 0.721 0.114 0.126 −0.527 
Autumn SVR 0.200-0.125-20 0.868 0.781 0.075 0.104 −0.672 
FFNN 6-8-1 0.844 0.723 0.093 0.107 −0.630 
ANFIS Gaussian-3 0.789 0.718 0.115 0.129 −0.464 
Winter SVR 0.5-0.380-25 0.814 0.701 0.092 0.108 −0.605 
FFNN 6-12-1 0.787 0.673 0.101 0.114 −0.589 
ANFIS Gaussian-2 0.766 0.662 0.117 0.132 −0.507 
Rasht Spring SVR 0.310-0.145-15 0.838 0.769 0.075 0.096 −0.312 
FFNN 6-10-1 0.814 0.740 0.098 0.115 −0.257 
ANFIS Gaussian-3 0.800 0.661 0.103 0.130 −0.225 
Summer SVR 0.400-0.130-10 0.816 0.757 0.086 0.103 −0.209 
FFNN 6-12-1 0.788 0.727 0.107 0.123 −0.186 
ANFIS Gaussian-3 0.731 0.682 0.126 0.136 −0.064 
Autumn SVR 0.450-0.136-10 0.803 0.741 0.089 0.107 −0200 
FFNN 6-10-1 0.781 0.719 0.118 0.129 −0.186 
ANFIS Gaussian-3 0.724 0.663 0.128 0.138 −0.092 
Winter SVR 0.40-0.300-20 0.745 0.696 0.101 0.122 −0.146 
FFNN 6-14-1 0.714 0.639 0.122 0.133 −0.139 
ANFIS Gaussian-2 0.693 0.604 0.131 0.144 −0.075 
Case studySeasonModelModel structureaDC
RMSEb
AIC
CalibrationVerificationCalibrationVerification
Tabriz Spring SVR 0.268-0.125-20 0.901 0.797 0.069 0.091 −0.804 
FFNN 6-8-1 0.876 0.755 0.081 0.098 −0.677 
ANFIS Gaussian-3 0.853 0.729 0.113 0.123 −0.549 
Summer SVR 0.250-0.112-15 0.875 0.783 0.073 0.101 −0.663 
FFNN 6-9-1 0.845 0.737 0.089 0.103 −0.643 
ANFIS Gaussian-3 0.802 0.721 0.114 0.126 −0.527 
Autumn SVR 0.200-0.125-20 0.868 0.781 0.075 0.104 −0.672 
FFNN 6-8-1 0.844 0.723 0.093 0.107 −0.630 
ANFIS Gaussian-3 0.789 0.718 0.115 0.129 −0.464 
Winter SVR 0.5-0.380-25 0.814 0.701 0.092 0.108 −0.605 
FFNN 6-12-1 0.787 0.673 0.101 0.114 −0.589 
ANFIS Gaussian-2 0.766 0.662 0.117 0.132 −0.507 
Rasht Spring SVR 0.310-0.145-15 0.838 0.769 0.075 0.096 −0.312 
FFNN 6-10-1 0.814 0.740 0.098 0.115 −0.257 
ANFIS Gaussian-3 0.800 0.661 0.103 0.130 −0.225 
Summer SVR 0.400-0.130-10 0.816 0.757 0.086 0.103 −0.209 
FFNN 6-12-1 0.788 0.727 0.107 0.123 −0.186 
ANFIS Gaussian-3 0.731 0.682 0.126 0.136 −0.064 
Autumn SVR 0.450-0.136-10 0.803 0.741 0.089 0.107 −0200 
FFNN 6-10-1 0.781 0.719 0.118 0.129 −0.186 
ANFIS Gaussian-3 0.724 0.663 0.128 0.138 −0.092 
Winter SVR 0.40-0.300-20 0.745 0.696 0.101 0.122 −0.146 
FFNN 6-14-1 0.714 0.639 0.122 0.133 −0.139 
ANFIS Gaussian-2 0.693 0.604 0.131 0.144 −0.075 

aNumbering of a-b-c in SVR structure represents γ, ε, c. The numbering of a-b-c in the structure of the neural network illustrates the number of the input layer, hidden layer, and output layer neurons. In ANFIS structure, MF-a denotes the used membership function and number of membership functions, respectively.

bSince all data are normalized, the RMSE has no dimension.

Close Modal

or Create an Account

Close Modal
Close Modal