Results of single AI-based models for both case studies for four seasons
Case study . | Season . | Model . | Model structurea . | DC . | RMSEb . | AIC . | ||
---|---|---|---|---|---|---|---|---|
Calibration . | Verification . | Calibration . | Verification . | |||||
Tabriz | Spring | SVR | 0.268-0.125-20 | 0.901 | 0.797 | 0.069 | 0.091 | −0.804 |
FFNN | 6-8-1 | 0.876 | 0.755 | 0.081 | 0.098 | −0.677 | ||
ANFIS | Gaussian-3 | 0.853 | 0.729 | 0.113 | 0.123 | −0.549 | ||
Summer | SVR | 0.250-0.112-15 | 0.875 | 0.783 | 0.073 | 0.101 | −0.663 | |
FFNN | 6-9-1 | 0.845 | 0.737 | 0.089 | 0.103 | −0.643 | ||
ANFIS | Gaussian-3 | 0.802 | 0.721 | 0.114 | 0.126 | −0.527 | ||
Autumn | SVR | 0.200-0.125-20 | 0.868 | 0.781 | 0.075 | 0.104 | −0.672 | |
FFNN | 6-8-1 | 0.844 | 0.723 | 0.093 | 0.107 | −0.630 | ||
ANFIS | Gaussian-3 | 0.789 | 0.718 | 0.115 | 0.129 | −0.464 | ||
Winter | SVR | 0.5-0.380-25 | 0.814 | 0.701 | 0.092 | 0.108 | −0.605 | |
FFNN | 6-12-1 | 0.787 | 0.673 | 0.101 | 0.114 | −0.589 | ||
ANFIS | Gaussian-2 | 0.766 | 0.662 | 0.117 | 0.132 | −0.507 | ||
Rasht | Spring | SVR | 0.310-0.145-15 | 0.838 | 0.769 | 0.075 | 0.096 | −0.312 |
FFNN | 6-10-1 | 0.814 | 0.740 | 0.098 | 0.115 | −0.257 | ||
ANFIS | Gaussian-3 | 0.800 | 0.661 | 0.103 | 0.130 | −0.225 | ||
Summer | SVR | 0.400-0.130-10 | 0.816 | 0.757 | 0.086 | 0.103 | −0.209 | |
FFNN | 6-12-1 | 0.788 | 0.727 | 0.107 | 0.123 | −0.186 | ||
ANFIS | Gaussian-3 | 0.731 | 0.682 | 0.126 | 0.136 | −0.064 | ||
Autumn | SVR | 0.450-0.136-10 | 0.803 | 0.741 | 0.089 | 0.107 | −0200 | |
FFNN | 6-10-1 | 0.781 | 0.719 | 0.118 | 0.129 | −0.186 | ||
ANFIS | Gaussian-3 | 0.724 | 0.663 | 0.128 | 0.138 | −0.092 | ||
Winter | SVR | 0.40-0.300-20 | 0.745 | 0.696 | 0.101 | 0.122 | −0.146 | |
FFNN | 6-14-1 | 0.714 | 0.639 | 0.122 | 0.133 | −0.139 | ||
ANFIS | Gaussian-2 | 0.693 | 0.604 | 0.131 | 0.144 | −0.075 |
Case study . | Season . | Model . | Model structurea . | DC . | RMSEb . | AIC . | ||
---|---|---|---|---|---|---|---|---|
Calibration . | Verification . | Calibration . | Verification . | |||||
Tabriz | Spring | SVR | 0.268-0.125-20 | 0.901 | 0.797 | 0.069 | 0.091 | −0.804 |
FFNN | 6-8-1 | 0.876 | 0.755 | 0.081 | 0.098 | −0.677 | ||
ANFIS | Gaussian-3 | 0.853 | 0.729 | 0.113 | 0.123 | −0.549 | ||
Summer | SVR | 0.250-0.112-15 | 0.875 | 0.783 | 0.073 | 0.101 | −0.663 | |
FFNN | 6-9-1 | 0.845 | 0.737 | 0.089 | 0.103 | −0.643 | ||
ANFIS | Gaussian-3 | 0.802 | 0.721 | 0.114 | 0.126 | −0.527 | ||
Autumn | SVR | 0.200-0.125-20 | 0.868 | 0.781 | 0.075 | 0.104 | −0.672 | |
FFNN | 6-8-1 | 0.844 | 0.723 | 0.093 | 0.107 | −0.630 | ||
ANFIS | Gaussian-3 | 0.789 | 0.718 | 0.115 | 0.129 | −0.464 | ||
Winter | SVR | 0.5-0.380-25 | 0.814 | 0.701 | 0.092 | 0.108 | −0.605 | |
FFNN | 6-12-1 | 0.787 | 0.673 | 0.101 | 0.114 | −0.589 | ||
ANFIS | Gaussian-2 | 0.766 | 0.662 | 0.117 | 0.132 | −0.507 | ||
Rasht | Spring | SVR | 0.310-0.145-15 | 0.838 | 0.769 | 0.075 | 0.096 | −0.312 |
FFNN | 6-10-1 | 0.814 | 0.740 | 0.098 | 0.115 | −0.257 | ||
ANFIS | Gaussian-3 | 0.800 | 0.661 | 0.103 | 0.130 | −0.225 | ||
Summer | SVR | 0.400-0.130-10 | 0.816 | 0.757 | 0.086 | 0.103 | −0.209 | |
FFNN | 6-12-1 | 0.788 | 0.727 | 0.107 | 0.123 | −0.186 | ||
ANFIS | Gaussian-3 | 0.731 | 0.682 | 0.126 | 0.136 | −0.064 | ||
Autumn | SVR | 0.450-0.136-10 | 0.803 | 0.741 | 0.089 | 0.107 | −0200 | |
FFNN | 6-10-1 | 0.781 | 0.719 | 0.118 | 0.129 | −0.186 | ||
ANFIS | Gaussian-3 | 0.724 | 0.663 | 0.128 | 0.138 | −0.092 | ||
Winter | SVR | 0.40-0.300-20 | 0.745 | 0.696 | 0.101 | 0.122 | −0.146 | |
FFNN | 6-14-1 | 0.714 | 0.639 | 0.122 | 0.133 | −0.139 | ||
ANFIS | Gaussian-2 | 0.693 | 0.604 | 0.131 | 0.144 | −0.075 |
aNumbering of a-b-c in SVR structure represents γ, ε, c. The numbering of a-b-c in the structure of the neural network illustrates the number of the input layer, hidden layer, and output layer neurons. In ANFIS structure, MF-a denotes the used membership function and number of membership functions, respectively.
bSince all data are normalized, the RMSE has no dimension.