Table 3

Results of combining models for both case studies for four seasons

Case studySeasonCombining modelModel structureaDC
RMSEb
CalibrationVerificationCalibrationVerification
Tabriz Spring Simple averaging – 0.91 0.81 0.068 0.054 
Weighted averaging 0.342-0.333-0.325 0.92 0.82 0.066 0.050 
Neural averaging 3-5-1 0.95 0.89 0.014 0.018 
Summer Simple averaging – 0.87 0.79 0.071 0.066 
Weighted averaging 0.346-0.335-0.319 0.87 0.81 0.070 0.064 
Neural averaging 3-6-1 0.93 0.89 0.038 0.045 
Autumn Simple averaging – 0.87 0.78 0.073 0.060 
Weighted averaging 0.346-0.338-0.316 0.88 0.80 0.072 0.060 
Neural averaging 3-4-1 0.92 0.90 0.041 0.047 
Winter Simple averaging – 0.83 0.71 0.091 0.0103 
Weighted averaging 0.343-0.333-0.324 0.85 0.72 0.091 0.101 
Neural averaging 3-8-1 0.91 0.86 0.057 0.062 
Rasht Spring Simple averaging – 0.84 0.76 0.074 0.055 
Weighted averaging 0.341-0.332-0.327 0.84 0.77 0.073 0.053 
Neural averaging  0.94 0.90 0.051 0.0.34 
Summer Simple averaging – 0.84 0.75 0.086 0.062 
Weighted averaging 0.348-0.337-0.315 0.85 0.76 0.084 0.061 
Neural averaging  0.91 0.90 0.046 0.047 
Autumn Simple averaging – 0.80 0.75 0.088 0.067 
Weighted averaging 0.348-0.338-0.314 0.81 0.75 0.086 0.067 
Neural averaging  0.91 0.87 0.052 0.049 
Winter Simple averaging – 0.75 0.70 0.099 0.110 
Weighted averaging 0.346-0.332-0.322 0.77 0.73 0.097 0.108 
Neural averaging  0.90 0.86 0.061 0.069 
Case studySeasonCombining modelModel structureaDC
RMSEb
CalibrationVerificationCalibrationVerification
Tabriz Spring Simple averaging – 0.91 0.81 0.068 0.054 
Weighted averaging 0.342-0.333-0.325 0.92 0.82 0.066 0.050 
Neural averaging 3-5-1 0.95 0.89 0.014 0.018 
Summer Simple averaging – 0.87 0.79 0.071 0.066 
Weighted averaging 0.346-0.335-0.319 0.87 0.81 0.070 0.064 
Neural averaging 3-6-1 0.93 0.89 0.038 0.045 
Autumn Simple averaging – 0.87 0.78 0.073 0.060 
Weighted averaging 0.346-0.338-0.316 0.88 0.80 0.072 0.060 
Neural averaging 3-4-1 0.92 0.90 0.041 0.047 
Winter Simple averaging – 0.83 0.71 0.091 0.0103 
Weighted averaging 0.343-0.333-0.324 0.85 0.72 0.091 0.101 
Neural averaging 3-8-1 0.91 0.86 0.057 0.062 
Rasht Spring Simple averaging – 0.84 0.76 0.074 0.055 
Weighted averaging 0.341-0.332-0.327 0.84 0.77 0.073 0.053 
Neural averaging  0.94 0.90 0.051 0.0.34 
Summer Simple averaging – 0.84 0.75 0.086 0.062 
Weighted averaging 0.348-0.337-0.315 0.85 0.76 0.084 0.061 
Neural averaging  0.91 0.90 0.046 0.047 
Autumn Simple averaging – 0.80 0.75 0.088 0.067 
Weighted averaging 0.348-0.338-0.314 0.81 0.75 0.086 0.067 
Neural averaging  0.91 0.87 0.052 0.049 
Winter Simple averaging – 0.75 0.70 0.099 0.110 
Weighted averaging 0.346-0.332-0.322 0.77 0.73 0.097 0.108 
Neural averaging  0.90 0.86 0.061 0.069 

aNumbering of a-b-c in weighted averaging structure represents the weights of SVR, FFNN, and ANFIS models. The numbering of a-b-c in the structure of neural averaging denotes the number of the input layer, hidden layer, and output layer neurons.

bSince all data are normalized, the RMSE has no dimension.

Close Modal

or Create an Account

Close Modal
Close Modal