Results of combining models for both case studies for four seasons
Case study . | Season . | Combining model . | Model structurea . | DC . | RMSEb . | ||
---|---|---|---|---|---|---|---|
Calibration . | Verification . | Calibration . | Verification . | ||||
Tabriz | Spring | Simple averaging | – | 0.91 | 0.81 | 0.068 | 0.054 |
Weighted averaging | 0.342-0.333-0.325 | 0.92 | 0.82 | 0.066 | 0.050 | ||
Neural averaging | 3-5-1 | 0.95 | 0.89 | 0.014 | 0.018 | ||
Summer | Simple averaging | – | 0.87 | 0.79 | 0.071 | 0.066 | |
Weighted averaging | 0.346-0.335-0.319 | 0.87 | 0.81 | 0.070 | 0.064 | ||
Neural averaging | 3-6-1 | 0.93 | 0.89 | 0.038 | 0.045 | ||
Autumn | Simple averaging | – | 0.87 | 0.78 | 0.073 | 0.060 | |
Weighted averaging | 0.346-0.338-0.316 | 0.88 | 0.80 | 0.072 | 0.060 | ||
Neural averaging | 3-4-1 | 0.92 | 0.90 | 0.041 | 0.047 | ||
Winter | Simple averaging | – | 0.83 | 0.71 | 0.091 | 0.0103 | |
Weighted averaging | 0.343-0.333-0.324 | 0.85 | 0.72 | 0.091 | 0.101 | ||
Neural averaging | 3-8-1 | 0.91 | 0.86 | 0.057 | 0.062 | ||
Rasht | Spring | Simple averaging | – | 0.84 | 0.76 | 0.074 | 0.055 |
Weighted averaging | 0.341-0.332-0.327 | 0.84 | 0.77 | 0.073 | 0.053 | ||
Neural averaging | 0.94 | 0.90 | 0.051 | 0.0.34 | |||
Summer | Simple averaging | – | 0.84 | 0.75 | 0.086 | 0.062 | |
Weighted averaging | 0.348-0.337-0.315 | 0.85 | 0.76 | 0.084 | 0.061 | ||
Neural averaging | 0.91 | 0.90 | 0.046 | 0.047 | |||
Autumn | Simple averaging | – | 0.80 | 0.75 | 0.088 | 0.067 | |
Weighted averaging | 0.348-0.338-0.314 | 0.81 | 0.75 | 0.086 | 0.067 | ||
Neural averaging | 0.91 | 0.87 | 0.052 | 0.049 | |||
Winter | Simple averaging | – | 0.75 | 0.70 | 0.099 | 0.110 | |
Weighted averaging | 0.346-0.332-0.322 | 0.77 | 0.73 | 0.097 | 0.108 | ||
Neural averaging | 0.90 | 0.86 | 0.061 | 0.069 |
Case study . | Season . | Combining model . | Model structurea . | DC . | RMSEb . | ||
---|---|---|---|---|---|---|---|
Calibration . | Verification . | Calibration . | Verification . | ||||
Tabriz | Spring | Simple averaging | – | 0.91 | 0.81 | 0.068 | 0.054 |
Weighted averaging | 0.342-0.333-0.325 | 0.92 | 0.82 | 0.066 | 0.050 | ||
Neural averaging | 3-5-1 | 0.95 | 0.89 | 0.014 | 0.018 | ||
Summer | Simple averaging | – | 0.87 | 0.79 | 0.071 | 0.066 | |
Weighted averaging | 0.346-0.335-0.319 | 0.87 | 0.81 | 0.070 | 0.064 | ||
Neural averaging | 3-6-1 | 0.93 | 0.89 | 0.038 | 0.045 | ||
Autumn | Simple averaging | – | 0.87 | 0.78 | 0.073 | 0.060 | |
Weighted averaging | 0.346-0.338-0.316 | 0.88 | 0.80 | 0.072 | 0.060 | ||
Neural averaging | 3-4-1 | 0.92 | 0.90 | 0.041 | 0.047 | ||
Winter | Simple averaging | – | 0.83 | 0.71 | 0.091 | 0.0103 | |
Weighted averaging | 0.343-0.333-0.324 | 0.85 | 0.72 | 0.091 | 0.101 | ||
Neural averaging | 3-8-1 | 0.91 | 0.86 | 0.057 | 0.062 | ||
Rasht | Spring | Simple averaging | – | 0.84 | 0.76 | 0.074 | 0.055 |
Weighted averaging | 0.341-0.332-0.327 | 0.84 | 0.77 | 0.073 | 0.053 | ||
Neural averaging | 0.94 | 0.90 | 0.051 | 0.0.34 | |||
Summer | Simple averaging | – | 0.84 | 0.75 | 0.086 | 0.062 | |
Weighted averaging | 0.348-0.337-0.315 | 0.85 | 0.76 | 0.084 | 0.061 | ||
Neural averaging | 0.91 | 0.90 | 0.046 | 0.047 | |||
Autumn | Simple averaging | – | 0.80 | 0.75 | 0.088 | 0.067 | |
Weighted averaging | 0.348-0.338-0.314 | 0.81 | 0.75 | 0.086 | 0.067 | ||
Neural averaging | 0.91 | 0.87 | 0.052 | 0.049 | |||
Winter | Simple averaging | – | 0.75 | 0.70 | 0.099 | 0.110 | |
Weighted averaging | 0.346-0.332-0.322 | 0.77 | 0.73 | 0.097 | 0.108 | ||
Neural averaging | 0.90 | 0.86 | 0.061 | 0.069 |
aNumbering of a-b-c in weighted averaging structure represents the weights of SVR, FFNN, and ANFIS models. The numbering of a-b-c in the structure of neural averaging denotes the number of the input layer, hidden layer, and output layer neurons.
bSince all data are normalized, the RMSE has no dimension.