Table 8

Statistical indices using the applied soft computing and empirical models for predicting the secondary flow depth of hydraulic jump (h2) in the testing phase

MethodStatistical parameters
RMSE (m)R2MAE (m)NSEIARMSE improvement %RMSE improvement %
ANFIS-FA 0.0053 0.975 0.0016 0.971 0.993 0.871 30.263 
ANFIS-GA 0.006 0.967 0.0018 0.962 0.991 0.854 21.053 
ANFIS-PSO 0.0063 0.962 0.002 0.959 0.99 0.846 17.105 
ANFIS 0.0076 0.944 0.0026 0.94 0.985 0.815 Base 
ANFIS-WOA 0.0079 0.938 0.0027 0.934 0.984 0.807 −3.947 
ANFIS-MFO 0.0084 0.931 0.0028 0.926 0.982 0.795 −10.526 
Carollo & Ferro (2004)  0.0242 0.626 0.007 0.388 0.865 0.41 – 
Pagliara & Palermo (2015)  0.0339 0.632 0.0116 −0.203 0.785 0.173 – 
Govinda Rao & Ramaprasad (1996)  0.035 0.573 0.012 −0.316 0.768 0.146 – 
Leutheusser & Kartha (1972)  0.041 0.576 0.014 −0.794 0.722 Base – 
MethodStatistical parameters
RMSE (m)R2MAE (m)NSEIARMSE improvement %RMSE improvement %
ANFIS-FA 0.0053 0.975 0.0016 0.971 0.993 0.871 30.263 
ANFIS-GA 0.006 0.967 0.0018 0.962 0.991 0.854 21.053 
ANFIS-PSO 0.0063 0.962 0.002 0.959 0.99 0.846 17.105 
ANFIS 0.0076 0.944 0.0026 0.94 0.985 0.815 Base 
ANFIS-WOA 0.0079 0.938 0.0027 0.934 0.984 0.807 −3.947 
ANFIS-MFO 0.0084 0.931 0.0028 0.926 0.982 0.795 −10.526 
Carollo & Ferro (2004)  0.0242 0.626 0.007 0.388 0.865 0.41 – 
Pagliara & Palermo (2015)  0.0339 0.632 0.0116 −0.203 0.785 0.173 – 
Govinda Rao & Ramaprasad (1996)  0.035 0.573 0.012 −0.316 0.768 0.146 – 
Leutheusser & Kartha (1972)  0.041 0.576 0.014 −0.794 0.722 Base – 
Close Modal

or Create an Account

Close Modal
Close Modal