Statistical indices using the applied soft computing and empirical models for predicting the secondary flow depth of hydraulic jump (h2) in the testing phase
Method . | Statistical parameters . | ||||||
---|---|---|---|---|---|---|---|
RMSE (m) . | R2 . | MAE (m) . | NSE . | IA . | RMSE improvement % . | RMSE improvement % . | |
ANFIS-FA | 0.0053 | 0.975 | 0.0016 | 0.971 | 0.993 | 0.871 | 30.263 |
ANFIS-GA | 0.006 | 0.967 | 0.0018 | 0.962 | 0.991 | 0.854 | 21.053 |
ANFIS-PSO | 0.0063 | 0.962 | 0.002 | 0.959 | 0.99 | 0.846 | 17.105 |
ANFIS | 0.0076 | 0.944 | 0.0026 | 0.94 | 0.985 | 0.815 | Base |
ANFIS-WOA | 0.0079 | 0.938 | 0.0027 | 0.934 | 0.984 | 0.807 | −3.947 |
ANFIS-MFO | 0.0084 | 0.931 | 0.0028 | 0.926 | 0.982 | 0.795 | −10.526 |
Carollo & Ferro (2004) | 0.0242 | 0.626 | 0.007 | 0.388 | 0.865 | 0.41 | – |
Pagliara & Palermo (2015) | 0.0339 | 0.632 | 0.0116 | −0.203 | 0.785 | 0.173 | – |
Govinda Rao & Ramaprasad (1996) | 0.035 | 0.573 | 0.012 | −0.316 | 0.768 | 0.146 | – |
Leutheusser & Kartha (1972) | 0.041 | 0.576 | 0.014 | −0.794 | 0.722 | Base | – |
Method . | Statistical parameters . | ||||||
---|---|---|---|---|---|---|---|
RMSE (m) . | R2 . | MAE (m) . | NSE . | IA . | RMSE improvement % . | RMSE improvement % . | |
ANFIS-FA | 0.0053 | 0.975 | 0.0016 | 0.971 | 0.993 | 0.871 | 30.263 |
ANFIS-GA | 0.006 | 0.967 | 0.0018 | 0.962 | 0.991 | 0.854 | 21.053 |
ANFIS-PSO | 0.0063 | 0.962 | 0.002 | 0.959 | 0.99 | 0.846 | 17.105 |
ANFIS | 0.0076 | 0.944 | 0.0026 | 0.94 | 0.985 | 0.815 | Base |
ANFIS-WOA | 0.0079 | 0.938 | 0.0027 | 0.934 | 0.984 | 0.807 | −3.947 |
ANFIS-MFO | 0.0084 | 0.931 | 0.0028 | 0.926 | 0.982 | 0.795 | −10.526 |
Carollo & Ferro (2004) | 0.0242 | 0.626 | 0.007 | 0.388 | 0.865 | 0.41 | – |
Pagliara & Palermo (2015) | 0.0339 | 0.632 | 0.0116 | −0.203 | 0.785 | 0.173 | – |
Govinda Rao & Ramaprasad (1996) | 0.035 | 0.573 | 0.012 | −0.316 | 0.768 | 0.146 | – |
Leutheusser & Kartha (1972) | 0.041 | 0.576 | 0.014 | −0.794 | 0.722 | Base | – |