Table 9

Statistical indices using the applied soft computing models for modeling the hydraulic jump length (Lj) in the training and validation phases

StageANFIS
RANFIS
Statistical parameters
Statistical parameters
MethodRMSE (m)R2IARMSE (m)R2IA
Train ANFIS-PSO 0.0495 0.863 0.962 0.0497 0.861 0.962 
ANFIS-FA 0.0484 0.869 0.964 0.0506 0.857 0.961 
ANFIS-GA 0.0468 0.877 0.966 0.0501 0.859 0.961 
ANFIS 0.054 0.837 0.954 0.0562 0.823 0.949 
ANFIS-MFO 0.0577 0.813 0.946 0.064 0.771 0.931 
ANFIS-WOA 0.0705 0.721 0.914 0.0711 0.717 0.912 
Validation ANFIS-PSO 0.0432 0.887 0.97 0.0466 0.869 0.965 
ANFIS-FA 0.0498 0.849 0.959 0.0461 0.87 0.964 
ANFIS-GA 0.049 0.854 0.96 0.0531 0.829 0.95 
ANFIS 0.0527 0.831 0.953 0.0557 0.812 0.947 
ANFIS-MFO 0.0603 0.782 0.933 0.0661 0.737 0.916 
ANFIS-WOA 0.0748 0.661 0.89 0.0751 0.658 0.889 
StageANFIS
RANFIS
Statistical parameters
Statistical parameters
MethodRMSE (m)R2IARMSE (m)R2IA
Train ANFIS-PSO 0.0495 0.863 0.962 0.0497 0.861 0.962 
ANFIS-FA 0.0484 0.869 0.964 0.0506 0.857 0.961 
ANFIS-GA 0.0468 0.877 0.966 0.0501 0.859 0.961 
ANFIS 0.054 0.837 0.954 0.0562 0.823 0.949 
ANFIS-MFO 0.0577 0.813 0.946 0.064 0.771 0.931 
ANFIS-WOA 0.0705 0.721 0.914 0.0711 0.717 0.912 
Validation ANFIS-PSO 0.0432 0.887 0.97 0.0466 0.869 0.965 
ANFIS-FA 0.0498 0.849 0.959 0.0461 0.87 0.964 
ANFIS-GA 0.049 0.854 0.96 0.0531 0.829 0.95 
ANFIS 0.0527 0.831 0.953 0.0557 0.812 0.947 
ANFIS-MFO 0.0603 0.782 0.933 0.0661 0.737 0.916 
ANFIS-WOA 0.0748 0.661 0.89 0.0751 0.658 0.889 
Close Modal

or Create an Account

Close Modal
Close Modal