Table 4

Statistical indicators of the degree of precision of the calculations used

AbbreviationNameComments
ME Mean error Basic statistical indicator 
RMSE Root mean square error Gives the standard deviation of the model prediction error 
PBIAS Percentual bias Percentual average deviation (quantifying the average undervaluation/overvaluation of the model) 
NSE Nash–Sutcliffe efficiency Standard in hydrology, primary indicator in this work 
cp Coefficient of persistence Compares the model's performance against a simple model using the observed value of the previous day as the prediction for the current day 
R2 Coefficient of determination Proportion of the variance in the dependent variable that is predictable from the independent variables. The coefficient of determination ranges from 0 to 1; an R2 value of 1 indicates that the regression predictions perfectly fit the data. 
AbbreviationNameComments
ME Mean error Basic statistical indicator 
RMSE Root mean square error Gives the standard deviation of the model prediction error 
PBIAS Percentual bias Percentual average deviation (quantifying the average undervaluation/overvaluation of the model) 
NSE Nash–Sutcliffe efficiency Standard in hydrology, primary indicator in this work 
cp Coefficient of persistence Compares the model's performance against a simple model using the observed value of the previous day as the prediction for the current day 
R2 Coefficient of determination Proportion of the variance in the dependent variable that is predictable from the independent variables. The coefficient of determination ranges from 0 to 1; an R2 value of 1 indicates that the regression predictions perfectly fit the data. 
Close Modal

or Create an Account

Close Modal
Close Modal