Comparison of the electrodes for COD detection with previously reported literature
Electrode . | Preparation method . | Detection method . | Linearity range (mg/L) . | Target substance . | Operation time (s) . | Reference . |
---|---|---|---|---|---|---|
Ti/TiO2 photoelectrode | Laser anneal | Photoelectrocatalysis | 50–2,000 | S: KHP | > 30 | Li et al. (2006b) |
Photoelectrocatalysis using flow injection | 5–1,000 | S: KHP | > 100 | Li et al. (2007) | ||
Ti/TiO2/PbO2 photoelectrode | Dip-coating combined with laser anneal | Photoelectrocatalysis | 20–2,500 | S: KHP | > 30 | Li et al. (2006a) |
Carbon fiber felt/β-PbO2 electrode | Electrochemical deposition | Electrochemical catalysis | 50–5,000 | S: NaAc, LA, NaCO, Glu, Xyl, HQ, Cys, GmA, p-HbA, p-Np, and KHP | > 120 | Mo et al. (2015) |
Pseudo-graphite electrode | Chemical vapor deposition method | Electrochemical catalysis | 0–1 × 104 | S: Glu, KHP, SDBS, and LA | – | Kabir et al. (2019) |
Nano-Cu/C electrode | Electrochemical deposition | Electrochemical catalysis | 32–256 | M: Gly and Glu (ratio of 1:1) | > 120 | Diksy et al. (2020) |
Ti/Sb–SnO2/PbO2 composite electrode | Electrochemical deposition | Electrochemical catalysis | 0.5–200 | S: Glu, Su, Np, HQ, p-HbA, and Te | > 30 | Ma et al. (2011) |
Mixed-phase TiO2 electrode | Dip-coating | Photoelectrocatalysis | 0–200 | S and M: KHP, Glu, GrA, SuA, MaA, and Glu-GtA | – | Zhang et al. (2009) |
Ti/TiO2 electrode | Anodic oxidation | Electrochemical catalysis | 20–2,500 | S: KHP | 100 | Ge et al. (2016) |
Ti/TiO2 nanotube array electrode | Secondary anodic oxidation | Electrochemical catalysis | 5–150 | S and M: An, RhB, and KHP | 60 | This work |
Electrode . | Preparation method . | Detection method . | Linearity range (mg/L) . | Target substance . | Operation time (s) . | Reference . |
---|---|---|---|---|---|---|
Ti/TiO2 photoelectrode | Laser anneal | Photoelectrocatalysis | 50–2,000 | S: KHP | > 30 | Li et al. (2006b) |
Photoelectrocatalysis using flow injection | 5–1,000 | S: KHP | > 100 | Li et al. (2007) | ||
Ti/TiO2/PbO2 photoelectrode | Dip-coating combined with laser anneal | Photoelectrocatalysis | 20–2,500 | S: KHP | > 30 | Li et al. (2006a) |
Carbon fiber felt/β-PbO2 electrode | Electrochemical deposition | Electrochemical catalysis | 50–5,000 | S: NaAc, LA, NaCO, Glu, Xyl, HQ, Cys, GmA, p-HbA, p-Np, and KHP | > 120 | Mo et al. (2015) |
Pseudo-graphite electrode | Chemical vapor deposition method | Electrochemical catalysis | 0–1 × 104 | S: Glu, KHP, SDBS, and LA | – | Kabir et al. (2019) |
Nano-Cu/C electrode | Electrochemical deposition | Electrochemical catalysis | 32–256 | M: Gly and Glu (ratio of 1:1) | > 120 | Diksy et al. (2020) |
Ti/Sb–SnO2/PbO2 composite electrode | Electrochemical deposition | Electrochemical catalysis | 0.5–200 | S: Glu, Su, Np, HQ, p-HbA, and Te | > 30 | Ma et al. (2011) |
Mixed-phase TiO2 electrode | Dip-coating | Photoelectrocatalysis | 0–200 | S and M: KHP, Glu, GrA, SuA, MaA, and Glu-GtA | – | Zhang et al. (2009) |
Ti/TiO2 electrode | Anodic oxidation | Electrochemical catalysis | 20–2,500 | S: KHP | 100 | Ge et al. (2016) |
Ti/TiO2 nanotube array electrode | Secondary anodic oxidation | Electrochemical catalysis | 5–150 | S and M: An, RhB, and KHP | 60 | This work |
S and M stand for single- and multi-component organic solutions, respectively. An, RhB, and KHP represent aniline, rhodamine B, and potassium hydrogen phthalate, respectively. The similar representative names include: Cys – cysteine, Glu – glucose, Gly – glycine, GmA – glutamic acid, GrA – glutaric acid, HQ – hydroquinone, LA – lactic acid, MaA – malonic acid, NaAc – sodium acetate. Na2C2O4 – sodium oxalate, Np – nitrophenol, p-HbA – p-hydroxybenzoic acid, p-Np – p-nitrophenol, Su – sucrose, SuA – succinic acid, SDBS – sodium dodecyl benzenesulfonate, Te – tetracycline, Xyl – xylose.