Skip to Main Content
Table 6

Comparison of the electrodes for COD detection with previously reported literature

ElectrodePreparation methodDetection methodLinearity range (mg/L)Target substanceOperation time (s)Reference
Ti/TiO2 photoelectrode Laser anneal Photoelectrocatalysis 50–2,000 S: KHP > 30 Li et al. (2006b)  
Photoelectrocatalysis using flow injection 5–1,000 S: KHP > 100 Li et al. (2007)  
Ti/TiO2/PbO2 photoelectrode Dip-coating combined with laser anneal Photoelectrocatalysis 20–2,500 S: KHP > 30 Li et al. (2006a)  
Carbon fiber felt/β-PbO2 electrode Electrochemical deposition Electrochemical catalysis 50–5,000 S: NaAc, LA, NaCO, Glu, Xyl, HQ, Cys, GmA, p-HbA, p-Np, and KHP > 120 Mo et al. (2015)  
Pseudo-graphite electrode Chemical vapor deposition method Electrochemical catalysis 0–1 × 104 S: Glu, KHP, SDBS, and LA – Kabir et al. (2019)  
Nano-Cu/C electrode Electrochemical deposition Electrochemical catalysis 32–256 M: Gly and Glu (ratio of 1:1) > 120 Diksy et al. (2020)  
Ti/Sb–SnO2/PbO2 composite electrode Electrochemical deposition Electrochemical catalysis 0.5–200 S: Glu, Su, Np, HQ, p-HbA, and Te > 30 Ma et al. (2011)  
Mixed-phase TiO2 electrode Dip-coating Photoelectrocatalysis 0–200 S and M: KHP, Glu, GrA, SuA, MaA, and Glu-GtA – Zhang et al. (2009)  
Ti/TiO2 electrode Anodic oxidation Electrochemical catalysis 20–2,500 S: KHP 100 Ge et al. (2016)  
Ti/TiO2 nanotube array electrode Secondary anodic oxidation Electrochemical catalysis 5–150 S and M: An, RhB, and KHP 60 This work 
ElectrodePreparation methodDetection methodLinearity range (mg/L)Target substanceOperation time (s)Reference
Ti/TiO2 photoelectrode Laser anneal Photoelectrocatalysis 50–2,000 S: KHP > 30 Li et al. (2006b)  
Photoelectrocatalysis using flow injection 5–1,000 S: KHP > 100 Li et al. (2007)  
Ti/TiO2/PbO2 photoelectrode Dip-coating combined with laser anneal Photoelectrocatalysis 20–2,500 S: KHP > 30 Li et al. (2006a)  
Carbon fiber felt/β-PbO2 electrode Electrochemical deposition Electrochemical catalysis 50–5,000 S: NaAc, LA, NaCO, Glu, Xyl, HQ, Cys, GmA, p-HbA, p-Np, and KHP > 120 Mo et al. (2015)  
Pseudo-graphite electrode Chemical vapor deposition method Electrochemical catalysis 0–1 × 104 S: Glu, KHP, SDBS, and LA – Kabir et al. (2019)  
Nano-Cu/C electrode Electrochemical deposition Electrochemical catalysis 32–256 M: Gly and Glu (ratio of 1:1) > 120 Diksy et al. (2020)  
Ti/Sb–SnO2/PbO2 composite electrode Electrochemical deposition Electrochemical catalysis 0.5–200 S: Glu, Su, Np, HQ, p-HbA, and Te > 30 Ma et al. (2011)  
Mixed-phase TiO2 electrode Dip-coating Photoelectrocatalysis 0–200 S and M: KHP, Glu, GrA, SuA, MaA, and Glu-GtA – Zhang et al. (2009)  
Ti/TiO2 electrode Anodic oxidation Electrochemical catalysis 20–2,500 S: KHP 100 Ge et al. (2016)  
Ti/TiO2 nanotube array electrode Secondary anodic oxidation Electrochemical catalysis 5–150 S and M: An, RhB, and KHP 60 This work 

S and M stand for single- and multi-component organic solutions, respectively. An, RhB, and KHP represent aniline, rhodamine B, and potassium hydrogen phthalate, respectively. The similar representative names include: Cys – cysteine, Glu – glucose, Gly – glycine, GmA – glutamic acid, GrA – glutaric acid, HQ – hydroquinone, LA – lactic acid, MaA – malonic acid, NaAc – sodium acetate. Na2C2O4 – sodium oxalate, Np – nitrophenol, p-HbA – p-hydroxybenzoic acid, p-Np – p-nitrophenol, Su – sucrose, SuA – succinic acid, SDBS – sodium dodecyl benzenesulfonate, Te – tetracycline, Xyl – xylose.

Close Modal

or Create an Account

Close Modal
Close Modal