Skip to Main Content

The results obtained with MODCEL were also compared with the results obtained with several other models published in the benchmarking document (Néelz & Pender 2013), as shown in the brief resume of Table 1.

Table 1

Models used in the Benchmarking (Source: Néelz & Pender, Environmental Agency 2013)

ModelDeveloperNumerical schemeEquations
ANUGA Geoscience Australia Explicit finite volume Complete shallow water equation 
Flowroute-iTM Ambiental Ltd 
InfoWorks ICM Wallingford Software 
ISIS 2D Halcrow Finite differences 
ISIS 2D GPU Explicit finite volume (Kurganov Petrova) 
JFLOW + JBA Consulting Explicit finite volume 
MIKE FLOW DHI Finite differences 
SOBEK Deltares Finite differences (scale implicit grid) 
TUFLOW BMT WBM Implicit finite differences 
TUFLOW GPU Finite volume 
TUFLOW FV 
XPSTORM Micro Drainage Ltd Explicit finite differences 
LISFLOOD-FP University of Bristol Explicit finite differences 2D diffusion equation (analogy) – without acceleration terms 
RFSM EDA HR Wallingford Finite differences and Finite volume (explicit) 
ISIS Fast Dynamic Halcrow Without time discretization 2D equation – without the acceleration and pressure terms 
UIM University of Exeter Explicit finite differences 
Ceasg Ceasg Flow Modelling (Amazi Consulting Ltd) Cellular automaton Mass and momentum conservation 
RFSM Direct HR Wallingford Without time discretization Distributes volumes along the continuity between the storage area and computes the flow using manning 
ModelDeveloperNumerical schemeEquations
ANUGA Geoscience Australia Explicit finite volume Complete shallow water equation 
Flowroute-iTM Ambiental Ltd 
InfoWorks ICM Wallingford Software 
ISIS 2D Halcrow Finite differences 
ISIS 2D GPU Explicit finite volume (Kurganov Petrova) 
JFLOW + JBA Consulting Explicit finite volume 
MIKE FLOW DHI Finite differences 
SOBEK Deltares Finite differences (scale implicit grid) 
TUFLOW BMT WBM Implicit finite differences 
TUFLOW GPU Finite volume 
TUFLOW FV 
XPSTORM Micro Drainage Ltd Explicit finite differences 
LISFLOOD-FP University of Bristol Explicit finite differences 2D diffusion equation (analogy) – without acceleration terms 
RFSM EDA HR Wallingford Finite differences and Finite volume (explicit) 
ISIS Fast Dynamic Halcrow Without time discretization 2D equation – without the acceleration and pressure terms 
UIM University of Exeter Explicit finite differences 
Ceasg Ceasg Flow Modelling (Amazi Consulting Ltd) Cellular automaton Mass and momentum conservation 
RFSM Direct HR Wallingford Without time discretization Distributes volumes along the continuity between the storage area and computes the flow using manning 

Close Modal

or Create an Account

Close Modal
Close Modal