Skip to Main Content

The hydraulic impact of the liquid in the pipeline performed oscillatory motion. The hydraulic model (Table 1) against shock waves for the present work includes a one-way surge tank for protection of the water transmission line against water hammer. Hence, the flow and pressure sensors equipped with data loggers were installed into the manholes of valves along the water transmission line. The flow and pressure variation due to water hammer were detected by sensors and transmitted by modems to the RS. These collected data were instantaneously compared with the calibrated mathematical model of the pipeline. The online comparison between the spatial data and non-spatial data made a communication between coordination of water system elements related to the GEO-database of the pipeline which revealed the water leakage zones in the present work (Asli et al. 2012, 2017; Duan et al. 2020).

Table 1

Specification of hydraulic model of water transmission line

KeywordValue
Units for flow M3/s 
Units for head 
Units for volume m3 
Units for diameter mm 
Units for length 
Units for mass kg 
Time increment 0.0148 
Number of time steps 339 
Simulation time 5.003 (s) 
10 Wave speed 1084 (m/s) 
11 Vapor pressure −10 (bar) 
12 Max. volume 198.483 (m3
13 Type of volume Air 
14 Type air valve 
15 Category Protection equip 
16 Node ID 24 
17 Label J28 
18 Units for pressure mH 
19 Specific gravity 
20 Courant number Cr = 0.997 
KeywordValue
Units for flow M3/s 
Units for head 
Units for volume m3 
Units for diameter mm 
Units for length 
Units for mass kg 
Time increment 0.0148 
Number of time steps 339 
Simulation time 5.003 (s) 
10 Wave speed 1084 (m/s) 
11 Vapor pressure −10 (bar) 
12 Max. volume 198.483 (m3
13 Type of volume Air 
14 Type air valve 
15 Category Protection equip 
16 Node ID 24 
17 Label J28 
18 Units for pressure mH 
19 Specific gravity 
20 Courant number Cr = 0.997 

Close Modal

or Create an Account

Close Modal
Close Modal