Similar to the streamflow parameter calibration in SWAT-CUP, the sensitivity of sediment parameters was assessed by using GSA in SWAT-CUP. Then, the calibration and validation were performed by optimizing the six most sensitive sediment parameters (listed in Table 5) using SUFI-2 in SWAT-CUP. A summary of the statistical performance of SSL simulation for calibration and validation is given in Table 10.
Model performance using the GPM P dataset for the prediction of SSL
Model . | R2 . | NSE . | PBIAS (%) . | RMSE (tons/day) . | RSR . | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train . | Test . | Train . | Test . | Train . | Test . | Train . | Test . | Train . | Test . | |
SWAT-CUP | 0.54 | 0.35 | 0.52 | 0.32 | −10.35 | −11.85 | 82,243.94 | 1,70,556.42 | 0.69 | 0.82 |
SWAT-RF | 0.67 | 0.63 | 0.67 | 0.63 | 1.73 | 4.12 | 83,790.21 | 1,04,196.61 | 0.57 | 0.60 |
SWAT-ANN | 0.74 | 0.66 | 0.74 | 0.65 | 3.17 | 3.74 | 81,808.82 | 82,729.57 | 0.50 | 0.60 |
SWAT-SVR | 0.51 | 0.52 | 0.51 | 0.52 | 1.80 | 1.5 | 1,05,069.12 | 1,11,570.7 | 0.69 | 0.70 |
Model . | R2 . | NSE . | PBIAS (%) . | RMSE (tons/day) . | RSR . | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train . | Test . | Train . | Test . | Train . | Test . | Train . | Test . | Train . | Test . | |
SWAT-CUP | 0.54 | 0.35 | 0.52 | 0.32 | −10.35 | −11.85 | 82,243.94 | 1,70,556.42 | 0.69 | 0.82 |
SWAT-RF | 0.67 | 0.63 | 0.67 | 0.63 | 1.73 | 4.12 | 83,790.21 | 1,04,196.61 | 0.57 | 0.60 |
SWAT-ANN | 0.74 | 0.66 | 0.74 | 0.65 | 3.17 | 3.74 | 81,808.82 | 82,729.57 | 0.50 | 0.60 |
SWAT-SVR | 0.51 | 0.52 | 0.51 | 0.52 | 1.80 | 1.5 | 1,05,069.12 | 1,11,570.7 | 0.69 | 0.70 |