Closed PBRs have advantages over open ponds for microalgal growth in terms of culture conditions and growth parameters such as pH, temperature, mixing, CO2, and O2 levels, evaporation and contaminations can be easily avoided, and increasing cell intensities with less land area requirement (Perez-Garcia et al. 2011; Singh & Sharma 2012). Despite these advantages, PBRs have several disadvantages, including overheating, scaling difficulties, and increasing construction costs (Singh & Sharma 2012). Table 2 compares open and closed large-scale microalgae growing methods.

Table 2

Comparison between open and closed algal cultivation systems

Culture systems for microalgaeOpen systems (raceway ponds)Closed systems (PBRs)
Contamination control Hard Simple 
Contamination risk Exceptionally high Less 
Space required More Less 
Water losses Exceptionally large None 
CO2 losses More None 
Temperature Highly variable Required cooling 
Temperature control Difficult More uniform temperature 
Sterility None Achievable 
Process control Difficult Easy 
Mixing Uniform Very poor 
Operation regime Batch or semi-continuous Batch or semi-continuous 
Weather dependence Insignificant, because closed layouts allow productivity even when the weather is severe Absolute, production impossible during rain 
Area/volume ratio Low (5–10/m) Large (20–200/m) 
Efficiency of treatment process Low, time-consuming, lower mass per volume Comparatively higher mass per volume 
Gas transfer control Less Large 
Algal species Restricted Flexible 
Biomass quality Variable Reproducible 
Shear Less Large 
Population density Less Large 
Harvesting efficiency Less Large 
Harvesting cost High Lower 
Light utilization efficiency Poor Good 
Most costly parameters Mixing O2 and temperature control 
Energy requirement High Lower 
Scale-up Difficult Difficult 
Capital costs Low High 
Operation costs Low High 
Cleaning None Required 
Culture systems for microalgaeOpen systems (raceway ponds)Closed systems (PBRs)
Contamination control Hard Simple 
Contamination risk Exceptionally high Less 
Space required More Less 
Water losses Exceptionally large None 
CO2 losses More None 
Temperature Highly variable Required cooling 
Temperature control Difficult More uniform temperature 
Sterility None Achievable 
Process control Difficult Easy 
Mixing Uniform Very poor 
Operation regime Batch or semi-continuous Batch or semi-continuous 
Weather dependence Insignificant, because closed layouts allow productivity even when the weather is severe Absolute, production impossible during rain 
Area/volume ratio Low (5–10/m) Large (20–200/m) 
Efficiency of treatment process Low, time-consuming, lower mass per volume Comparatively higher mass per volume 
Gas transfer control Less Large 
Algal species Restricted Flexible 
Biomass quality Variable Reproducible 
Shear Less Large 
Population density Less Large 
Harvesting efficiency Less Large 
Harvesting cost High Lower 
Light utilization efficiency Poor Good 
Most costly parameters Mixing O2 and temperature control 
Energy requirement High Lower 
Scale-up Difficult Difficult 
Capital costs Low High 
Operation costs Low High 
Cleaning None Required 

Close Modal

or Create an Account

Close Modal
Close Modal