Natural coagulants remove trapped Escherichia coli, suspended solids, turbidity, heavy metals, organic matter, dyes, and harvest microalgae. However, one of the primary drawbacks of using natural coagulants in microalgae harvesting is the lack of full-scale use (Yin 2010; Muhammad et al. 2021). Table 5 demonstrates that biocoagulation technology is a low energy-intensive and ecologically friendly alternative to physical separation techniques or chemical flocculation for extracting microalgal biomass. Even though using natural coagulants for microalgae harvesting is cheaper than chemical one (as depicted in Table 5), the affordability of natural coagulants depends on plant cultivating, harvesting, and extraction of active coagulants, which highly influence by spatial and temporal characteristics (Behera & Balasubramanian 2019). Studies examining the technological efficacy and economics of various harvesting techniques have revealed that plant-based coagulants have the lowest cost of biomass recovery. Since greenhouse gases like CO2 are mostly to blame for ozone layer depletion and global warming, large-scale biomass recovery systems must be ecologically benign and enable sustained biomass production. Many investigations were conducted to evaluate the unsuitability of using natural coagulants. The results demonstrate that using chitosan has higher energy consumption and high greenhouse gas emissions than alum (Behera & Balasubramanian 2019).

Table 5

Moringa olefra applications for microalgae harvesting

Type of cultivationMoringa olefra dosageExperimental conditionsMicroalgae removal (%)References
PBR (Chlorella sp. and Scenedesmus sp.) Coagulant dosages (10, 25, 40, 55, and 70) mg/L pH 8
Stirring device speed (20, 60, 100) rpm
Mixing period (10, 30, 50 min) 
85% at 60 mg/L dosage Hasan et al. (2021)  
Pond culture (mix) 15 mg/L pH 8
Mixing time 5 min
Mixing rate 30 rpm
Settling time 20 min 
93% Moniem et al. (2021)  
Anaerobically digested black water (AnBW) 475 mg/L Sedimentation time 45 min
pH 7 
95% Quesada et al. (2019)  
Wastewater, PBR 70 mg/L Mixing rate 20 rpm
Mixing time 10 min 
83% Kapse & Samadder (2021)  
Fresh water microalgae 10 mg/L Sedimentation time 20 min
pH (6.9–7.5) 
95% Santos et al. (2016)  
Type of cultivationMoringa olefra dosageExperimental conditionsMicroalgae removal (%)References
PBR (Chlorella sp. and Scenedesmus sp.) Coagulant dosages (10, 25, 40, 55, and 70) mg/L pH 8
Stirring device speed (20, 60, 100) rpm
Mixing period (10, 30, 50 min) 
85% at 60 mg/L dosage Hasan et al. (2021)  
Pond culture (mix) 15 mg/L pH 8
Mixing time 5 min
Mixing rate 30 rpm
Settling time 20 min 
93% Moniem et al. (2021)  
Anaerobically digested black water (AnBW) 475 mg/L Sedimentation time 45 min
pH 7 
95% Quesada et al. (2019)  
Wastewater, PBR 70 mg/L Mixing rate 20 rpm
Mixing time 10 min 
83% Kapse & Samadder (2021)  
Fresh water microalgae 10 mg/L Sedimentation time 20 min
pH (6.9–7.5) 
95% Santos et al. (2016)  
Table 6

Flocculant cost study for harvesting microalgae biomass

Coagulant/flocculantMicroalgaeCoagulant/flocculant cost/ton of biomass harvested (US$/ton)References
AlCl3 N. oculata 40 Garzon-Sanabria et al. (2013)  
Al2(SO4)3 C. vulgaris 28 Vandamme et al. (2012)  
Chitosan N. oculata 44 Garzon-Sanabria et al. (2013)  
MO Microalgae consortium 12.7 Behera & Balasubramanian (2019)  
Coagulant/flocculantMicroalgaeCoagulant/flocculant cost/ton of biomass harvested (US$/ton)References
AlCl3 N. oculata 40 Garzon-Sanabria et al. (2013)  
Al2(SO4)3 C. vulgaris 28 Vandamme et al. (2012)  
Chitosan N. oculata 44 Garzon-Sanabria et al. (2013)  
MO Microalgae consortium 12.7 Behera & Balasubramanian (2019)  

Close Modal

or Create an Account

Close Modal
Close Modal