To assess the performance of different treatments assessed in this paper, a comparative study was performed based on the essential dose (g/l), pH, biodegradability, and range of primary COD concentrations (mg/l) for wastewater. Considering the various test conditions, e.g., temperature, pH, wastewater resistance, hydrological site, and seasonal climate, it has only one relative meaning. However, such a comparison is still effective in the evaluation and assessment of each technique's effectiveness for wastewater treatment. Hence, the comparison contributes to evaluating each method's overall performance. Table 7 shows the removal efficiency of various methods (individuals and integrated) on COD in some other studies. Considering the high ratio of BOD5/COD of the local wastewater, it seems using a biological process in combination with the CGCT + UV process could be useful to enhance the wastewater biodegradability and enhance the performance of removal of effluent parameters (TDS, COD, TOC). Therefore, despite indicating a lower removal of effluent parameters in comparison with other methods, the performance of the CGCT + UV treatment is still auspicious. This treatment can treat wastewater of changing strengths and change recalcitrant compounds in the wastewater into more biodegradable compounds via oxidation procedures. Subsequently, through biological treatments, the target compounds’ degradation can be complemented in the wastewater before their discharge. Moreover, the H2O2 decomposition by GAC is activated with no energy input, thus, treatment costs are reduced. In Table 8, comparison between some studies which used adsorption and ozonation methods is shown as well. Moreover, evaluation of the performance of methods in some studies in purifying the wastewater and pollutants by considering ozone and UV methods is depicted in Table 9.
A comparison of COD removal for leachate using different treatments
Treatment . | Precipitant/adsorbent/membrane . | Dose (g/L) . | Initial concentration in the leachate (mg/L) . | Pressure (bar) . | BOD/COD . | pH . | Removal efficiency/rejection rate (%) . | Reference . |
---|---|---|---|---|---|---|---|---|
COD . | COD . | |||||||
Individual treatment | ||||||||
RO | SW30-2521 | – | 3,840 | 52 | 0.31 | 6.0 | 98 | Chianese et al. (1999) |
NF | NAa | NA | 17,000 | NA | 0.03 | 6.4 | 96 | Peters (1998) |
Adsorption | PAC | 6 | 5,690 | – | NA | NA | 95 | Diamadopoulos (1994) |
Ozonation | O3 | 3.6 | 1,090 | – | 0.04 | 8.3 | 70 | Wang et al. (2004) |
Ozonation | O3 | 3 × 10−3 | 8,000 | – | 0.09 | 8 | 35 | Kurniawan et al. (2006) |
Ozonation | O3 | 0.1 | 10,160 | – | 0.66 | 7.2 | 25.1 | Nabavi et al. (2022) |
MBR | – | – | 1,550 ± 239b | – | – | – | 63.4 ± 12.2 | Zolfaghari et al. (2016) |
ICUSbR reactor | – | – | 860.5 | – | – | 7 − 8.5 | 88.59 | Abood et al. (2013) |
SBBGR | – | – | 2,609 | – | – | – | 54 | Cassano et al. (2011) |
A/O reactor- UASB (anammox) | SBR | – | 1,050 | – | – | 7.15 − 8.33 | 17.6 | Wang et al. (2016) |
indirect EO | Anode; Pt-Ru-Ir-Ti | – | 85.41 | Singla et al. (2018) | ||||
NaCl | 0.75 | NA | – | – | 2.4 | |||
GAC adsorption | Ozone- | 30 | 8,000 | – | 0.09 | 8 − 9 | 75 | Kurniawan et al. (2005) |
modified GAC | 30 | 8,000 | – | 0.09 | 8 − 9 | 43 | ||
GAC | ||||||||
H2O2 | H2O2 | 3.0 | 8,000 | – | 0.08 | 8.0 | 33 | Kurniawan & Lo (2009) |
Fenton oxidation | Fe(II)SO4/H2O2 | 1/2 | 5,850 | – | 0.6 | <4.0 | 85 | Calli et al. (2005) |
Activated sludge | – | – | 7,439 | – | 0.22 | 8.52 | 98 | Li & Zhao (2001) |
Sequence batch reactor | – | – | 12,760 | – | 0.46 | 7.10 | 95 | Zaloum & Abbott (1997) |
Combined treatments | ||||||||
EF | SS anode/RVC cathode | Ecell = 2.5 V | NA | – | – | – | 93–96 | Lizama-Bahena et al. (2015) |
Na2SO4 | 0.05 M | |||||||
Heterogeneous-EF | BDD/Ni-foam | 15v | Iglesias et al. (2015) | |||||
Na2SO4 | 0.01 M | |||||||
Fe-AB | – | – | – | – | – | 56 | ||
RO + UASB | – | – | 35,000 | NA | – | 7.4 | 99 | Jans et al. (1992) |
RO + activated sludge | – | – | 6,440 | NA | 0.70 | NA | 99 | Baumgarten & Seyfried (1996) |
RO + evaporation | AD | – | 19,900 | 60 | 0.20 | 6.4 | 88 | Di Palma et al. (2002) |
NF + adsorption + ozonation | Desal 5 K | – | 4,000 | 8.5 | NA | 6.5 | 99 | Rautenbach & Mellis (1994) |
GAC | NA | |||||||
O3 | NA | |||||||
UF + adsorption | GAC | NA | 3,050 | – | 0.55 | 7.0 | 97 | Pirbazari et al. (1996) |
Fenton oxidation and adsorption | Fe(ii) | 0.8 | 2,020 | – | 0.13 | 4.0 | 92 | Gau & Chang (1996) |
H2O2 | 0.5 | |||||||
PAC | 0.5 | |||||||
Coagulation and Fenton oxidation | FeCl3 | 5 × 10−1 | 7,400 | – | 0.06 | 8.5 | 90 | Rivas et al. (2004) |
Fe(ii) | NA | |||||||
H2O2 | ||||||||
Ozonation and adsorption | O3 | 5 × 10−2 | 4,970 | – | 0.17 | 8–9 | 90 | Rivas et al. (2003) |
GAC | 5 | |||||||
Ozonation and adsorption | O3 | 3 × 10−3 | 8,000 | – | 0.09 | 8 | 86 | Kurniawan et al. (2006) |
GAC | ||||||||
Ozonation and adsorption | O3 | 0.1 | 10,160 | – | 0.66 | 7.2 | 55.2 | Nabavi et al. (2022) |
GAC | ||||||||
Ozonation and activated sludge | O3 | 0.05 | 2,800 | – | 0.54 | 6 | 97 | Kamenev et al. (2001) |
Fenton oxidation and activated sludge | Fe(II)SO4/H2O2 | 0.9/0.9 | 7,000 | – | 0.15 | 3.5 | 98 | Bae et al. (1997) |
E-Fenton | Ti/RuO2 (Fe/H2O2) | – | 4,123 | – | 0.21 | 9.65 | 82.38 | Singa et al. (2018) |
Photo-Fenton + Ozone + H2O2 | FeSO4 | 0.3 | 11,950 | – | – | 8.9 | 95.1 | Poblete & Pérez (2020) |
H2O2 | 0.67 | |||||||
Adsorption (ion-exchange) | (ScWO)/Zeolite | – | 1,258 | 230 | 0.16 | 74 | Scandelai et al. (2020) | |
Vermiculite/Ozonation | Ozone | – | 860 | – | 0.13 | 5.8 | 16.5 | Braga et al. (2020) |
Fe (NO3)3 | ||||||||
Reverse osmosis and UASB | – | – | 35,000 | NA | NA | 7.4 | 99 | Jans et al. (1992) |
H2O2 + GAC | Granular | 3/15 | 8,000 | – | 0.08 | 8.0 | 82 | Kurniawan & Lo (2009) |
H2O2 + GAC + Fe(II)SO4 | Granular | 3/15/1.5 | 8,000 | – | 0.08 | 3.0 | 88 | Kurniawan & Lo (2009) |
2,000 | 3.0 | 93 |
Treatment . | Precipitant/adsorbent/membrane . | Dose (g/L) . | Initial concentration in the leachate (mg/L) . | Pressure (bar) . | BOD/COD . | pH . | Removal efficiency/rejection rate (%) . | Reference . |
---|---|---|---|---|---|---|---|---|
COD . | COD . | |||||||
Individual treatment | ||||||||
RO | SW30-2521 | – | 3,840 | 52 | 0.31 | 6.0 | 98 | Chianese et al. (1999) |
NF | NAa | NA | 17,000 | NA | 0.03 | 6.4 | 96 | Peters (1998) |
Adsorption | PAC | 6 | 5,690 | – | NA | NA | 95 | Diamadopoulos (1994) |
Ozonation | O3 | 3.6 | 1,090 | – | 0.04 | 8.3 | 70 | Wang et al. (2004) |
Ozonation | O3 | 3 × 10−3 | 8,000 | – | 0.09 | 8 | 35 | Kurniawan et al. (2006) |
Ozonation | O3 | 0.1 | 10,160 | – | 0.66 | 7.2 | 25.1 | Nabavi et al. (2022) |
MBR | – | – | 1,550 ± 239b | – | – | – | 63.4 ± 12.2 | Zolfaghari et al. (2016) |
ICUSbR reactor | – | – | 860.5 | – | – | 7 − 8.5 | 88.59 | Abood et al. (2013) |
SBBGR | – | – | 2,609 | – | – | – | 54 | Cassano et al. (2011) |
A/O reactor- UASB (anammox) | SBR | – | 1,050 | – | – | 7.15 − 8.33 | 17.6 | Wang et al. (2016) |
indirect EO | Anode; Pt-Ru-Ir-Ti | – | 85.41 | Singla et al. (2018) | ||||
NaCl | 0.75 | NA | – | – | 2.4 | |||
GAC adsorption | Ozone- | 30 | 8,000 | – | 0.09 | 8 − 9 | 75 | Kurniawan et al. (2005) |
modified GAC | 30 | 8,000 | – | 0.09 | 8 − 9 | 43 | ||
GAC | ||||||||
H2O2 | H2O2 | 3.0 | 8,000 | – | 0.08 | 8.0 | 33 | Kurniawan & Lo (2009) |
Fenton oxidation | Fe(II)SO4/H2O2 | 1/2 | 5,850 | – | 0.6 | <4.0 | 85 | Calli et al. (2005) |
Activated sludge | – | – | 7,439 | – | 0.22 | 8.52 | 98 | Li & Zhao (2001) |
Sequence batch reactor | – | – | 12,760 | – | 0.46 | 7.10 | 95 | Zaloum & Abbott (1997) |
Combined treatments | ||||||||
EF | SS anode/RVC cathode | Ecell = 2.5 V | NA | – | – | – | 93–96 | Lizama-Bahena et al. (2015) |
Na2SO4 | 0.05 M | |||||||
Heterogeneous-EF | BDD/Ni-foam | 15v | Iglesias et al. (2015) | |||||
Na2SO4 | 0.01 M | |||||||
Fe-AB | – | – | – | – | – | 56 | ||
RO + UASB | – | – | 35,000 | NA | – | 7.4 | 99 | Jans et al. (1992) |
RO + activated sludge | – | – | 6,440 | NA | 0.70 | NA | 99 | Baumgarten & Seyfried (1996) |
RO + evaporation | AD | – | 19,900 | 60 | 0.20 | 6.4 | 88 | Di Palma et al. (2002) |
NF + adsorption + ozonation | Desal 5 K | – | 4,000 | 8.5 | NA | 6.5 | 99 | Rautenbach & Mellis (1994) |
GAC | NA | |||||||
O3 | NA | |||||||
UF + adsorption | GAC | NA | 3,050 | – | 0.55 | 7.0 | 97 | Pirbazari et al. (1996) |
Fenton oxidation and adsorption | Fe(ii) | 0.8 | 2,020 | – | 0.13 | 4.0 | 92 | Gau & Chang (1996) |
H2O2 | 0.5 | |||||||
PAC | 0.5 | |||||||
Coagulation and Fenton oxidation | FeCl3 | 5 × 10−1 | 7,400 | – | 0.06 | 8.5 | 90 | Rivas et al. (2004) |
Fe(ii) | NA | |||||||
H2O2 | ||||||||
Ozonation and adsorption | O3 | 5 × 10−2 | 4,970 | – | 0.17 | 8–9 | 90 | Rivas et al. (2003) |
GAC | 5 | |||||||
Ozonation and adsorption | O3 | 3 × 10−3 | 8,000 | – | 0.09 | 8 | 86 | Kurniawan et al. (2006) |
GAC | ||||||||
Ozonation and adsorption | O3 | 0.1 | 10,160 | – | 0.66 | 7.2 | 55.2 | Nabavi et al. (2022) |
GAC | ||||||||
Ozonation and activated sludge | O3 | 0.05 | 2,800 | – | 0.54 | 6 | 97 | Kamenev et al. (2001) |
Fenton oxidation and activated sludge | Fe(II)SO4/H2O2 | 0.9/0.9 | 7,000 | – | 0.15 | 3.5 | 98 | Bae et al. (1997) |
E-Fenton | Ti/RuO2 (Fe/H2O2) | – | 4,123 | – | 0.21 | 9.65 | 82.38 | Singa et al. (2018) |
Photo-Fenton + Ozone + H2O2 | FeSO4 | 0.3 | 11,950 | – | – | 8.9 | 95.1 | Poblete & Pérez (2020) |
H2O2 | 0.67 | |||||||
Adsorption (ion-exchange) | (ScWO)/Zeolite | – | 1,258 | 230 | 0.16 | 74 | Scandelai et al. (2020) | |
Vermiculite/Ozonation | Ozone | – | 860 | – | 0.13 | 5.8 | 16.5 | Braga et al. (2020) |
Fe (NO3)3 | ||||||||
Reverse osmosis and UASB | – | – | 35,000 | NA | NA | 7.4 | 99 | Jans et al. (1992) |
H2O2 + GAC | Granular | 3/15 | 8,000 | – | 0.08 | 8.0 | 82 | Kurniawan & Lo (2009) |
H2O2 + GAC + Fe(II)SO4 | Granular | 3/15/1.5 | 8,000 | – | 0.08 | 3.0 | 88 | Kurniawan & Lo (2009) |
2,000 | 3.0 | 93 |
aNA, not available.
bMean ± SD.
Comparison between other studies (adsorption and ozonation methods)
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (g/h) . | Initial concentration (mg/L) . | Reference . |
---|---|---|---|---|---|---|---|
Ozonation | |||||||
Amoxicillin | 18.2 | 90 | 320.8 | 7.2 | 1.6 × 10−4M | 5 × 10−4M | Andreozzi et al. (2005) |
Sulfadiazine sulfamethizole sulfamethoxazole | – | 100 | 3 | 7 | 2.3 mg/l | 1 | Garoma et al. (2010) |
66 kinds of pollutants | – | 90 | 20 | 7 | 0.69 | >10−3 | Prieto-Rodríguez (2013) |
Diclofenac Sulfamethoxazole | – | 90 | 30 | 7 | 0.188 | 30 | Martins et al. (2015) |
Amoxicillin | 8.3 | 22 | 50 | 6.8 | 0.048 | 50 | Moussavi et al. (2015) |
Bisphenol A | 12 | 100 | 3 | 8 | 10 mg/l | 10 | Cotman et al. (2016) |
Contaminant . | Precipitant/ adsorbent/membrane . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Dose (g/L) . | Initial concentration (mg/L) . | Reference . |
Adsorption | |||||||
Trimethoprim | PAC GAC | 85 | 30 | 4 | 0.3 | 50 | Kim et al. (2010) |
Amoxicillin Cephalexin Tetracycline Penicillin | activated carbon nanoparticles prepared from vine wood | 74–88 | 480 | 2 | 0.4 | 20 | Pouretedal & Sadegh (2014) |
Crystal Violet | activated carbon magnetic nanocomposite with SnFe2O4 | 95 | 70 | 7 | 2 | 25 | Rai et al. (2015) |
Amoxicillin | activated carbon prepared by chemical activation of olive stone | 93 | 7,000 | 3.2 | 1 | 25 | Limousy et al. (2017) |
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (g/h) . | Initial concentration (mg/L) . | Reference . |
---|---|---|---|---|---|---|---|
Ozonation | |||||||
Amoxicillin | 18.2 | 90 | 320.8 | 7.2 | 1.6 × 10−4M | 5 × 10−4M | Andreozzi et al. (2005) |
Sulfadiazine sulfamethizole sulfamethoxazole | – | 100 | 3 | 7 | 2.3 mg/l | 1 | Garoma et al. (2010) |
66 kinds of pollutants | – | 90 | 20 | 7 | 0.69 | >10−3 | Prieto-Rodríguez (2013) |
Diclofenac Sulfamethoxazole | – | 90 | 30 | 7 | 0.188 | 30 | Martins et al. (2015) |
Amoxicillin | 8.3 | 22 | 50 | 6.8 | 0.048 | 50 | Moussavi et al. (2015) |
Bisphenol A | 12 | 100 | 3 | 8 | 10 mg/l | 10 | Cotman et al. (2016) |
Contaminant . | Precipitant/ adsorbent/membrane . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Dose (g/L) . | Initial concentration (mg/L) . | Reference . |
Adsorption | |||||||
Trimethoprim | PAC GAC | 85 | 30 | 4 | 0.3 | 50 | Kim et al. (2010) |
Amoxicillin Cephalexin Tetracycline Penicillin | activated carbon nanoparticles prepared from vine wood | 74–88 | 480 | 2 | 0.4 | 20 | Pouretedal & Sadegh (2014) |
Crystal Violet | activated carbon magnetic nanocomposite with SnFe2O4 | 95 | 70 | 7 | 2 | 25 | Rai et al. (2015) |
Amoxicillin | activated carbon prepared by chemical activation of olive stone | 93 | 7,000 | 3.2 | 1 | 25 | Limousy et al. (2017) |
Comparison between other studies (ozone and UV methods)
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (mg/L) . | Catalyst dose (g/L) . | Initial concentration (mg/L) . | UV source . | Catalyst . | Reference . |
---|---|---|---|---|---|---|---|---|---|---|
Catalytic ozonation + UV | ||||||||||
Sulfamethoxazole | 65 within 45 min | 100 | 5 | 7 | 20 | 1.5 | 10−4M | UVA | TiO2 | Beltran et al. (2008) |
Dichloroacetonitrile | – | 100 | 120 | 6.5 | 1.13 g/h | 1 | 1 | UVA + Sunlight | TiO2 | Shin et al. (2013) |
Atenolol Hydrochlorothiazide Ofloxacin Trimethoprim | 70 within 2 h | 100 | 30 20 15 15 | 7 | 19 | 0.25 | 10 | Sunlight | TiO2 | Márquez et al. (2014) |
Six kinds of pollutants | 80 within 1 h | 100 | 10–50 | 7 | 13 | 0.2 | 10−5M | Sunlight | TiO2 | Quiñones et al. (2015) |
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (g/h) . | Catalyst dose (g/L) . | Initial concentration (mg/L) . | UV source . | Catalyst . | Reference . |
Catalytic ozonation | ||||||||||
Naproxen Carbamazepine | 62 73 within 2 h | 100 | 10 | 5 | 38–40 g/Nm3 | 1 | 15 | – | TiO2 | Rosal et al. (2008) |
RR-120 | 96.1 within 2 h | 84.5 | 10 | 11 | 0.0648 | 3 | 100 | – | Magnetite ore | Moussavi et al. (2012) |
RR-198 | 71 within 1 h | 82 | 10 | 10 | 0.0648 | 2 | 100 | – | AC prepared from the pistachio hull | Moussavi & Khosravi (2012) |
Amoxicillin | 32.4 within 50 h | 64.7 | 50 | 6.8 | 0.048 | 0.1 | 50 | – | AC | Moussavi et al. (2015) |
Bisphenol A | 68 within 75 min | 100 | 3 | 8 | 0.324 | 0.2 | 10 | – | γ-Al2O3 | Cotman et al. (2016) |
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (mg/L) . | Catalyst dose (g/L) . | Initial concentration (mg/L) . | UV source . | Catalyst . | Reference . |
---|---|---|---|---|---|---|---|---|---|---|
Catalytic ozonation + UV | ||||||||||
Sulfamethoxazole | 65 within 45 min | 100 | 5 | 7 | 20 | 1.5 | 10−4M | UVA | TiO2 | Beltran et al. (2008) |
Dichloroacetonitrile | – | 100 | 120 | 6.5 | 1.13 g/h | 1 | 1 | UVA + Sunlight | TiO2 | Shin et al. (2013) |
Atenolol Hydrochlorothiazide Ofloxacin Trimethoprim | 70 within 2 h | 100 | 30 20 15 15 | 7 | 19 | 0.25 | 10 | Sunlight | TiO2 | Márquez et al. (2014) |
Six kinds of pollutants | 80 within 1 h | 100 | 10–50 | 7 | 13 | 0.2 | 10−5M | Sunlight | TiO2 | Quiñones et al. (2015) |
Contaminant . | TOC removal efficiency (%) . | Removal efficiency/rejection rate (%) . | Time (min) . | pH . | Ozone dose (g/h) . | Catalyst dose (g/L) . | Initial concentration (mg/L) . | UV source . | Catalyst . | Reference . |
Catalytic ozonation | ||||||||||
Naproxen Carbamazepine | 62 73 within 2 h | 100 | 10 | 5 | 38–40 g/Nm3 | 1 | 15 | – | TiO2 | Rosal et al. (2008) |
RR-120 | 96.1 within 2 h | 84.5 | 10 | 11 | 0.0648 | 3 | 100 | – | Magnetite ore | Moussavi et al. (2012) |
RR-198 | 71 within 1 h | 82 | 10 | 10 | 0.0648 | 2 | 100 | – | AC prepared from the pistachio hull | Moussavi & Khosravi (2012) |
Amoxicillin | 32.4 within 50 h | 64.7 | 50 | 6.8 | 0.048 | 0.1 | 50 | – | AC | Moussavi et al. (2015) |
Bisphenol A | 68 within 75 min | 100 | 3 | 8 | 0.324 | 0.2 | 10 | – | γ-Al2O3 | Cotman et al. (2016) |