Kaur et al. (2017) analyzed a DEP degradation study using transition metal-doped TiO2 nanoparticles (Mn-, Ni-, and Co-doped TiO2) under Hg lump (125 W) at 365 nm, where Ni-doped TiO2 showed better results. Different ratios of reduced graphene oxide zinc oxide (rGO-ZnO) nanocomposites prepared using temperature refluxing methods showed efficient photodegradation of DEP (Kumar et al. 2021). Under UV radiation and magnetic separation, Fe3O4@TiO2 core-shell nanoparticles which get operationalized using cyclodextrin plays an important role as a photocatalyst for DBP degradation and mineralization (Chalasani & Vasudevan 2013). Mono-methyl phthalate and phthalate are the two intermediates (aromatic) observed in the electrolysis of DMP which indicates the attack on the methyl esters group at the initial step in the oxidation process (De Souza et al. 2013). Organic layered double hydroxides (LHDs)/TiO2 composites were effective in the adsorption and photodegradation of DMP and approximately 80% DMP was removed in 4 h (Huang et al. 2013). Table 4 shows different catalysts used for the photocatalytic process along with the light source and percentage of removal.
Photocatalysis method for phthalate degradation
Phthalate . | Catalysts/methods . | Light sources . | Removal efficiency (%) . | References . |
---|---|---|---|---|
DMP | Multiwalled carbon nanotubes – TiO2 composites | UV lamp (96 W) | 97 | Tan et al. (2018) |
US created N-doped TiO2 and non-US created N-doped TiO2 | Visible light | 58 (300 min) | Zhou et al. (2013) | |
Liquid phase plasma (LPP) method with a TiO2 photocatalyst and H2O2 | Tungsten electrode | 82.2 (180 min) | Lee et al. (2019a, 2019b) | |
TiO2/carbon aerogel | Xe lamp (300 W): infrared light filter | >83 (180 min) | Cui et al. (2016) | |
DEP | Nanorod ZnO/SiC nanocomposite | UV lamps (8 W); Visible-light (500W) | >90 | Meenakshi and Sivasamy (2018) |
Pt/In2O3–TiO2 nanotubes | Xenon lamp (350 W): | 99.8(45 min) | Ma et al. (2012) | |
Nano Fe2O3 embedded in montmorillonite with citric acid | Xenon light (50 W) and light irradiation | 71.7 | Sun et al. (2021) | |
DBP | Mesoporous TiO2 nanotubes (m-TiO2-NTs) | High pressure mercury lamp (125 W) | 70 (60 min) | He et al. (2019) |
ZnO nanorods Co-doped with Fe and Ag | Visible LED lamp (7 W) | 95 (60 min) | Eslami et al. (2017) | |
Graphene – TiO2 nanotube array photoelectrodes | Xenon lamp (150 W) | 87.9 (90 min) | Wang et al. (2019a, 2019b, 2019c) | |
α-Fe2O3 nanoparticles | Mercury lamp (250 W) | 94 | Liu et al. (2018) | |
BBP | P-doped TiO2 (PTIO) thin-films | Xe lamp (300 W) | 98 (240 min) | Mohamed and Aazam (2013) |
Chlorine-doped TiO2 | Xe lamp (300 W) | 92 | Wang et al. (2012) | |
DEHP | Z-scheme heterojunction catalyst of Bi2O3 and TiO2 | Xe lamp | 89 (90 min) | Zhang et al. (2022a, 2022b) |
Fe-Ag@ZnO nanorods | Visible LED lamp | 90 (120 min) | Eslami et al. (2017) |
Phthalate . | Catalysts/methods . | Light sources . | Removal efficiency (%) . | References . |
---|---|---|---|---|
DMP | Multiwalled carbon nanotubes – TiO2 composites | UV lamp (96 W) | 97 | Tan et al. (2018) |
US created N-doped TiO2 and non-US created N-doped TiO2 | Visible light | 58 (300 min) | Zhou et al. (2013) | |
Liquid phase plasma (LPP) method with a TiO2 photocatalyst and H2O2 | Tungsten electrode | 82.2 (180 min) | Lee et al. (2019a, 2019b) | |
TiO2/carbon aerogel | Xe lamp (300 W): infrared light filter | >83 (180 min) | Cui et al. (2016) | |
DEP | Nanorod ZnO/SiC nanocomposite | UV lamps (8 W); Visible-light (500W) | >90 | Meenakshi and Sivasamy (2018) |
Pt/In2O3–TiO2 nanotubes | Xenon lamp (350 W): | 99.8(45 min) | Ma et al. (2012) | |
Nano Fe2O3 embedded in montmorillonite with citric acid | Xenon light (50 W) and light irradiation | 71.7 | Sun et al. (2021) | |
DBP | Mesoporous TiO2 nanotubes (m-TiO2-NTs) | High pressure mercury lamp (125 W) | 70 (60 min) | He et al. (2019) |
ZnO nanorods Co-doped with Fe and Ag | Visible LED lamp (7 W) | 95 (60 min) | Eslami et al. (2017) | |
Graphene – TiO2 nanotube array photoelectrodes | Xenon lamp (150 W) | 87.9 (90 min) | Wang et al. (2019a, 2019b, 2019c) | |
α-Fe2O3 nanoparticles | Mercury lamp (250 W) | 94 | Liu et al. (2018) | |
BBP | P-doped TiO2 (PTIO) thin-films | Xe lamp (300 W) | 98 (240 min) | Mohamed and Aazam (2013) |
Chlorine-doped TiO2 | Xe lamp (300 W) | 92 | Wang et al. (2012) | |
DEHP | Z-scheme heterojunction catalyst of Bi2O3 and TiO2 | Xe lamp | 89 (90 min) | Zhang et al. (2022a, 2022b) |
Fe-Ag@ZnO nanorods | Visible LED lamp | 90 (120 min) | Eslami et al. (2017) |