The adsorption performance of Cr(VI)-IIP prepared in this experiment was compared with that of other Cr(VI) adsorbents, such as equilibrium time, adsorption capacity and selectivity. As shown in Table 5, first, the Cr(VI)-IIP had a great advantage in selectivity compared with other common Cr(VI) adsorbents (Faleschini et al. 2023; Li et al. 2023c, 2023d; Mao et al. 2023), this was attributed to the strong specific recognition ability of Cr(VI) by the imprinted cavity left after the functional monomers chelated with the target ion during the preparation of Cr(VI)-IIP, illustrated that the effectiveness of ion imprinting technique. Afterwards, compared with Cr(VI)-imprinted polymers prepared from single functional monomer such as 4-VP (Nchoe et al. 2020), 3-aminopropyltriethoxysilane (APTES) (Zhang et al. 2022) and 1-vinylimidazole(1-VI) (Hassanzadeh et al. 2018), Cr(VI)-IIP showed a large improvement in adsorption capacity and selectivity. Finally, compared to Cr(VI)-imprinted polymers prepared with bifunctional monomers such as 4-VP/methyl methacrylate (MMA) (Neolaka et al. 2018) and 4-VP/2-hydroxyethyl methacrylate (HEMA) (Taghizadeh & Hassanpour 2017), the advantages of Cr(VI)-IIP were mainly reflected in the higher adsorption amount and superior selectivity, though its adsorption equilibrium time was not the shortest. Clearly, the advantage here was the establishment of the synergy between the pre-assembly system of bifunctional monomers and surface imprinting technology based on mesoporous silicon material SBA-15.

Table 5

Comparison with other similar type of adsorbents for Cr(VI)

AdsorbentsEquilibrium time (min)Qe (mg/g)Selectivity interferentkanalyte/InterferentReference
Woolen sludge 240 1.1 – – Faleschini et al. (2023)  
Biochar-supported nanoscale zero-valent iron 30 48.45 – – Mao et al. (2023)  
Chitosan-coated magnetic carbon 40 83.4 – – Li et al. (2023d)  
Mg/Al-layered double hydroxides 180 177.88 – – Li et al. (2023c)  
β-cyclodextrin IIP(4-VP) 720 16.9 Cr(III) 1.17 Nchoe et al. (2020)  
Diatom IIP(APTES) 120 2.5 Al(III) 1.72 Zhang et al. (2022)  
Fe(III) 1.42 
Polyacrylonitrile IIP(1-VI) 12 183.62 Cr(III) 3.448 Hassanzadeh et al. (2018)  
Cd(II) 8.409 
Cu(II) 10.093 
ANZ IIP(4-VP/MMA) 30 4.365 Pb(II) 7.181 Neolaka et al. (2018)  
Ni(II) 0.439 
Magnetic multiwall carbon nanotubes (MMWCNTs) IIP(4-VP/HEMA) 30 56.1 Cu(II) 12.32 Taghizadeh & Hassanpour (2017)  
Ni(II) 16.39 
MPS-modified SBA-15 IIP(4-VP/MAA) 70 96.32 Cr(III) 15.00 This study 
Cu(II) 9.63 
Cd(II) 16.67 
Ni(II) 12.50 
AdsorbentsEquilibrium time (min)Qe (mg/g)Selectivity interferentkanalyte/InterferentReference
Woolen sludge 240 1.1 – – Faleschini et al. (2023)  
Biochar-supported nanoscale zero-valent iron 30 48.45 – – Mao et al. (2023)  
Chitosan-coated magnetic carbon 40 83.4 – – Li et al. (2023d)  
Mg/Al-layered double hydroxides 180 177.88 – – Li et al. (2023c)  
β-cyclodextrin IIP(4-VP) 720 16.9 Cr(III) 1.17 Nchoe et al. (2020)  
Diatom IIP(APTES) 120 2.5 Al(III) 1.72 Zhang et al. (2022)  
Fe(III) 1.42 
Polyacrylonitrile IIP(1-VI) 12 183.62 Cr(III) 3.448 Hassanzadeh et al. (2018)  
Cd(II) 8.409 
Cu(II) 10.093 
ANZ IIP(4-VP/MMA) 30 4.365 Pb(II) 7.181 Neolaka et al. (2018)  
Ni(II) 0.439 
Magnetic multiwall carbon nanotubes (MMWCNTs) IIP(4-VP/HEMA) 30 56.1 Cu(II) 12.32 Taghizadeh & Hassanpour (2017)  
Ni(II) 16.39 
MPS-modified SBA-15 IIP(4-VP/MAA) 70 96.32 Cr(III) 15.00 This study 
Cu(II) 9.63 
Cd(II) 16.67 
Ni(II) 12.50 

Close Modal

or Create an Account

Close Modal
Close Modal