The models differ significantly in capturing monthly precipitation across climate classifications (Figure 6). The CC between models and CN05.1 was relatively higher in the SAR and SHD (>0.723), but in other regions (i.e., HD and AR) it was ranged from 0.396 to 0.673, with weaker correlations. The MAE and RMSE in AR were relatively small and concentrated, while they were relatively large and dispersed over HD. The DISO of the models precipitation ranged from 0.856 to 3.085, revealing a huge heterogeneity among climate classifications. Based on the DISO ranking, it is discovered that the best-performing models among climate classifications were MIROC6 (AR and SAR), TaiESM1 (SHD) and ACCESS-CM2 (HD), respectively. For China, the models that ranked first and last in terms of comprehensive performance were ACCESS-CM2 (DISO 1.630) and MPI-ESM1-2-HR (DISO 1.715) (Table 2).
Table 2

Average CC, MAE, RMSE and DISO of 16 GCMs in China, including precipitation and temperature

Climate modelPrecipitation
Temperature
CCMAERMSEDISOCCMAERMSEDISO
ACCESS-CM2 0.643 0.850 1.282 1.630 0.978 2.057 2.552 3.280 
ACCESS-ESM1-5 0.632 0.878 1.313 1.674 0.978 2.053 2.542 3.269 
BCC-CSM2-MR 0.633 0.866 1.292 1.652 0.976 2.114 2.631 3.377 
CESM2 0.631 0.885 1.326 1.688 0.977 2.027 2.532 3.246 
CESM2-WACCM 0.618 0.893 1.339 1.709 0.977 2.033 2.531 3.248 
CMCC-CM2-SR5 0.627 0.875 1.304 1.669 0.970 2.243 2.667 3.564 
CMCC-ESM2 0.633 0.875 1.307 1.668 0.976 2.129 2.652 3.403 
CNRM-CM6-1 0.615 0.889 1.343 1.710 0.975 2.115 2.644 3.387 
IITM-ESM 0.617 0.872 1.317 1.682 0.976 2.061 2.575 3.300 
MIROC6 0.646 0.864 1.284 1.638 0.975 2.119 2.652 3.397 
MPI-ESM1-2-HR 0.614 0.895 1.343 1.715 0.976 2.096 2.604 3.345 
MPI-ESM1-2-LR 0.623 0.876 1.312 1.677 0.977 2.088 2.579 3.320 
MRI-ESM2-0 0.624 0.885 1.336 1.698 0.977 2.076 2.568 3.304 
NorESM2-LM 0.630 0.882 1.326 1.687 0.977 2.080 2.587 3.321 
NorESM2-MM 0.625 0.891 1.339 1.703 0.977 2.089 2.598 3.336 
TaiESM1 0.625 0.880 1.315 1.681 0.971 2.238 2.666 3.560 
Climate modelPrecipitation
Temperature
CCMAERMSEDISOCCMAERMSEDISO
ACCESS-CM2 0.643 0.850 1.282 1.630 0.978 2.057 2.552 3.280 
ACCESS-ESM1-5 0.632 0.878 1.313 1.674 0.978 2.053 2.542 3.269 
BCC-CSM2-MR 0.633 0.866 1.292 1.652 0.976 2.114 2.631 3.377 
CESM2 0.631 0.885 1.326 1.688 0.977 2.027 2.532 3.246 
CESM2-WACCM 0.618 0.893 1.339 1.709 0.977 2.033 2.531 3.248 
CMCC-CM2-SR5 0.627 0.875 1.304 1.669 0.970 2.243 2.667 3.564 
CMCC-ESM2 0.633 0.875 1.307 1.668 0.976 2.129 2.652 3.403 
CNRM-CM6-1 0.615 0.889 1.343 1.710 0.975 2.115 2.644 3.387 
IITM-ESM 0.617 0.872 1.317 1.682 0.976 2.061 2.575 3.300 
MIROC6 0.646 0.864 1.284 1.638 0.975 2.119 2.652 3.397 
MPI-ESM1-2-HR 0.614 0.895 1.343 1.715 0.976 2.096 2.604 3.345 
MPI-ESM1-2-LR 0.623 0.876 1.312 1.677 0.977 2.088 2.579 3.320 
MRI-ESM2-0 0.624 0.885 1.336 1.698 0.977 2.076 2.568 3.304 
NorESM2-LM 0.630 0.882 1.326 1.687 0.977 2.080 2.587 3.321 
NorESM2-MM 0.625 0.891 1.339 1.703 0.977 2.089 2.598 3.336 
TaiESM1 0.625 0.880 1.315 1.681 0.971 2.238 2.666 3.560 
Figure 6

DISO 3D distribution and histograms for 16 GCMs precipitation in four climate classifications: (a) arid, (b) semi-arid, (c) semi-humid, and (d) humid.

Figure 6

DISO 3D distribution and histograms for 16 GCMs precipitation in four climate classifications: (a) arid, (b) semi-arid, (c) semi-humid, and (d) humid.

Close modal
Close Modal

or Create an Account

Close Modal
Close Modal