Abstract

Although waste stabilization ponds (WSPs) are widely used in developing countries, monitoring data on their operational performance are scarce. Traditional methods for monitoring in-pond conditions, i.e. conducting hand held measurements from a small boat or installing fixed sensor networks, are not straightforward to realize and create an unhealthy working environment for field workers. A promising technology for the safe and efficient collection of monitoring data is a compact autonomous surface vehicle (ASV), capable of autonomous navigation along a predefined trajectory based on geographic coordinates and measurements in different places and depths. In this practical paper, the development process, technical details and functional testing results of a low-cost ASV for WSP monitoring are presented. Commonly available construction materials and electronic components were used to ensure affordability and reparability. The access to online tutorials and peer-support was crucial for assembling the open-source autopilot and data logger. The ASV demonstrated satisfactory performance for both the autonomous navigation as well as the georeferenced data logging of measurements at a real-scale WSP in Paraguay. This study demonstrates how the adoption of open-source hardware and software offers the flexibility for the wastewater professionals to develop customized DIY solutions for specific monitoring applications and working environments.

You do not currently have access to this content.