Efficient water use in agriculture depends on a number of variables, from the farmers’ perceptions of these concerns, to the socioeconomic dimensions. In any case, it is important to bring about more insight into these fields, specifically to stimulate the design of adjusted management plans and policies which increase water efficiency on farms. These are relevant motivations to perform more research in these fields. In this framework, the main objective of this study is to analyse the water management efficiency of the agricultural sector in the regions (NUTS 2) and countries in the European Union. For this purpose, statistical information from the Eurostat was considered and an approach based on the Cobb–Douglas theory of production was used which combines DEA (data envelopment analysis) with factor and cluster analysis. Also performed was qualitative analysis with the Atlas.ti software. This approach that combines qualitative analysis with DEA–factor-cluster analysis brings new outcomes to the literature. The insights obtained from this study reveal that it is possible to improve water management without compromising the agricultural output and while still improving farmers’ profit. For example, in some French regions, almost 100% of the surface water withdrawal for agricultural irrigation could be saved.

Water shortage has become a concern for several stakeholders related to water use and management, from the policymakers to the end consumer. However, sometimes, it is not easy to implement any strategy to save freshwater, either due to the perceptions of the different stakeholders, or the lack of adjusted plans and strategies to improve efficiency (Marston & Cai, 2016).

Specifically, in the agricultural sector, these questions related to efficient freshwater management hold special relevance, not only for environmental and sustainability problems, but, also, in reducing farmers’ costs. Public institutions and policymakers have a determinant role to play here, namely, in the framework of the Common Agricultural Policy (CAP) inside the European Union (Salmoral et al., 2017).

In fact, across the world, water withdrawal by the agricultural sector (around 2010) was about 70%. This question assumes special relevance in Africa and Asia (81%) and Oceania (65%). In European and American countries, the situation is not so problematic (25% and 48%, respectively), but deserves also special attention, namely, in the southern countries (Aquastat, 2019).

To increase the effectiveness of the implementation of any plan or strategy to promote efficiency in water use on farms, it is fundamental to involve several stakeholders, namely, farmers, in the design and implementation process. This will improve farmers’ perceptions and will allow for adjustments based on the stakeholders’ experiences, problems and concerns (Esteban et al., 2018).

In this way, it is crucial to bring more insight regarding these aspects associated with efficient water management in the agricultural sector of the European Union regions and countries. In this context, the main objective of the research presented here is to analyse the efficiency of water management by the agricultural sector within the European Union. For the literature survey, mainly the whole databases from the Web of Science (2019) were considered. To organize the literature review the Atlas.ti (2019) software was taken into account. Following this, an analysis of the data, obtained from Eurostat (2019), was carried out (other databases could be considered, however the information available in the Eurostat seems to be more adjusted to the objectives proposed in this research), and this statistical information was explored through an approach that combined factor and cluster analysis with data envelopment analysis (DEA). The factor and cluster analysis was considered to find more homogeneous decision making units (DMUs). With more homogeneous groups of European Union regions and countries, the intention was to reduce the influence, in the efficiency analysis, from national and regional specific characteristics. Before the cluster analysis, factor analysis was used to avoid problems of collinearity between the variables. After the factor and cluster analysis, considering Stata (2019) and Torres-Reyna (n.d.) procedures, the DEA through the DEAP (2019) software was performed. For the DEA the Cobb & Douglas (1928) model from the theory of production was considered as the base. This research follows studies such as, for example, Ali & Klein (2014), Xiang et al. (2016), Martinho (2017) and Suárez-Varela et al. (2017). These authors considered the DEA methodologies so as to analyse the issues related to the sustainable use of resources, including water. Approaches combining qualitative analysis, with factor-cluster analysis and DEA seem to be a field where there are issues to be explored, namely, those related to water efficiency.

This study delivers a systematic analysis about the literature related to efficient water management in the agricultural sector and highlights the potentialities of water savings in European countries and regions. These are relevant insights for the several operators related to water use and management (farmers and policymakers), based on new approaches that combine qualitative analysis (considering the Atlas.ti software) with the DEA–factor-cluster analysis.

To better organize the literature analysis, first a qualitative analysis will be done considering the Atlas.ti software and 50 of the 54 scientific documents obtained from the Web of Science databases related to the topics: ‘efficient water management’; agriculture. Only 50 were considered because the Atlas.ti was unable to import information for the following studies: Cassel et al. (1978), Barrett & Skogerboe (1980), Rahman et al. (1981) and Hundal & Dedatta (1984).

Figure 1 presents the main words in the 50 scientific documents related to efficient water management by the agricultural sector. It is proposed that the following three groups can be considered: irrigation efficiency, water shortage, water quantification. In the following subsections, these three groups will be explored in depth, through a literature survey, and several studies are considered here.

Fig. 1.

Cloud words for the works obtained from the Web of Science related to the topics: ‘efficient water management’; agriculture.

Fig. 1.

Cloud words for the works obtained from the Web of Science related to the topics: ‘efficient water management’; agriculture.

Close modal

Irrigation efficiency

Efficient water management in irrigation practices depends on several factors (Koscielniak et al., 2005), as those related to the political, economic, social, technological, legal and environmental contexts (Nazari et al., 2018). Among these factors, the depth of application, for instance, may have relevance in these contexts, as well as adjusted drainage systems (Chandio et al., 2013). In turn, the irrigation practices are interrelated with other agricultural techniques, such as soil management approaches (Rahman & Islam, 1991; Lee et al., 2018) or energy consumption (Yuan et al., 2018). In fact, the way in which irrigation is performed can have a significant impact on water management efficiency, namely, in surface irrigation (Castanedo et al., 2013), on agricultural production (Ismail et al., 2008) and soil productivities (Kim et al., 2018). It also has implications on farms’ economic indicators (Kumar et al., 2009) and on the morphology and spatial distribution of the roots from permanent crops (Deng et al., 2017).

In the framework of the European Union requirements (e.g., WFD, 2000) for efficient water management, the water pricing systems, namely, those which charge farmers for the costs produced, in some circumstances may bring negative environmental externalities, such as putting more pressure on the demand for alternative water sources (Dono et al., 2010). These findings show the importance of monitoring and assessing the several policy instruments before and after their application (Kahil et al., 2015), to better achieve the objectives proposed and to be able to choose the best adjusted strategies (Kumar & Singh, 2003).

Farmers’ involvement in the whole design process of policy and water management plans improves the efficacy of their implementation. Another important aspect is to support farmers in choosing the best practices to improve the efficiency in water management with benefits for both the environment and the farmers’ income (Levidow et al., 2014).

In any case, water management efficiency has significantly improved around the world, thanks to developments in the technologies and techniques of irrigation or due to farmers’ options and decisions being more adjusted (Roth et al., 2013); nevertheless, it is still important to improve upon this (van Steenbergen et al., 2015).

Water shortage

Water scarcity is and will be one of the biggest challenges for the several stakeholders concerned with sustainable development, namely, for the water managers and policymakers. Considering water scarcity and its importance as a resource for the agricultural sector (Zhang et al., 2014a), the reuse of treated water may be an interesting approach towards dealing with this environmental and sustainability problem (Alcon et al., 2010), namely, reutilizing water from food industry effluent (Duek, 2016). The shortage of water will increase in the future because of climate change and global warming, with significant impacts on the percentage of irrigated land (D'Agostino et al., 2014) and promoting persistent dry seasons (Jin et al., 2018). The global increased demand for food and bioenergy sources also puts pressure on the availability of water (Graveline & Merel, 2014), such as with soil and water pollution (Muttamara & Sales, 1994).

Another relevant way to deal with the water shortage is to design an optimal allocation of irrigation to each stage of crop evolution, reducing hydric stresses and improving farmers’ profit (Fatemi et al., 2011). Another such aspect concerns the choice of cultivars (turf industry) having a lower need for water (Githinji et al., 2009). Efficient water management plans here make a determinant contribution.

Viticulture and wine production is a particular sector where water scarcity brings and will bring serious challenges, namely, in maintaining the specific characteristics of the certified wine, and where it is crucial for adjusted hydric stress management (Lanari et al., 2014). Rice cultivation is another agricultural production where water scarcity raises special concerns (Mostafa & Fujimoto, 2014) and where it is fundamental to implement efficient water management practices (Sharma & Rajput, 1990), such as mulching, for example (Totin et al., 2013). Mulching practice also has its application and use in other agricultural sectors, namely, when combined with surface irrigation (Zhang et al., 2014b), because, indeed, there are other farming sectors that may be affected by the water shortage, as, for example, maize, vegetable and fruit crops (including dry fruits).

Water quantification

This subsection intends to highlight methodologies, in general, considered to quantify the water availability and to present approaches that, in some contexts, may be considered as alternatives to those explored in this study. For example, to understand the water dynamics, it is important to analyse subsurface water movement (Shaw et al., 2001) and the relationships between the various water reservoirs, which may highlight important insights for the several stakeholders and it is here where methodologies such as oxygen-18 (180) and deuterium isotopes may produce relevant outcomes (Aly et al., 1993). Another interesting approach is the surface energy balance algorithm for land (SEBAL) for evapotranspiration analysis (Atasever & Ozkan, 2018), or METRIC (mapping evapotranspiration at high resolution using internalized calibration) (Chavez et al., 2009), or nonparametric approaches such as random regression forest models (RRFM) (Gonzalo-Martin et al., 2017), wireless in-field sensing and control (WISC) software (Kim et al., 2008; Kim & Evans, 2009), decision support systems for canal water release (CWREDSS) (Rao & Rajput, 2009), or surface renewal (SR) methodology (Rosa & Tanny, 2015).

Other important questions relate to the calculation of water requirements for plants (or the levels of evapotranspiration) and the availability of water, namely, in the soil (Wijewardana & Galagedara, 2010). Here, some indicators/indices such as the crop coefficient, or field capacity (Constanza Daza-Torres et al., 2017), or the leaf area index (Gassmann et al., 2011), or trunk sap flow (Liu et al., 2009) may be useful for the design of adjusted plans for water management (Haofang et al., 2017).

In any case, each approach needs to be validated for its location relative to specific conditions of each context (Otero et al., 2012) and farming production (Yang et al., 2016), namely, in the decision support systems, to avoid bias results and rejections by the several stakeholders related to water management (Kinzli et al., 2015).

To design better water management practices, it is important to quantify evapotranspiration and the water requirements of plants and it is here where new information technologies and communication and mathematical models may provide useful support (Kumar et al., 2012; Kumar, 2013). The real-time assessment of soil quality and water requirements and automated irrigation approaches with multi-sensors has gained increasing importance over the last few years (Miller et al., 2014).

Unfortunately, data about water use/withdrawal are not abundant in the international mainstream databases and less specifically for the agricultural sector. In any case, it was possible to obtain statistical information from the Eurostat for some European Union regions and countries, presented in Tables 13, with a robust time series for the period 2010–2012. Considering the approaches used here (the DEA), averages over this period for cross-section analysis were obtained.

Table 1.

Water abstraction for agriculture irrigation, on average, over the period 2010–2012 (million cubic metres), at a national level.

European Union countriesFresh surface and groundwaterFresh surface waterFresh groundwater
Bulgaria 796.11 790.35 5.76 
Czechia 22.20 21.83 0.37 
Denmark 173.33 2.30 171.00 
Spain 22,394.33 17,486.33 4,908.00 
France 2,994.03 1,843.79 1,150.24 
Cyprus 160.67 37.67 123.00 
Lithuania 1.04 0.25 0.79 
Hungary 115.73 90.46 8.74 
Malta 24.08 0.00 24.08 
Netherlands 62.13 14.77 47.36 
Poland 79.43 79.43 0.00 
Romania 310.33 307.00 3.33 
Slovenia 2.34 2.09 0.25 
Slovakia 13.33 11.37 1.97 
United Kingdom 90.23 49.53 40.70 
European Union countriesFresh surface and groundwaterFresh surface waterFresh groundwater
Bulgaria 796.11 790.35 5.76 
Czechia 22.20 21.83 0.37 
Denmark 173.33 2.30 171.00 
Spain 22,394.33 17,486.33 4,908.00 
France 2,994.03 1,843.79 1,150.24 
Cyprus 160.67 37.67 123.00 
Lithuania 1.04 0.25 0.79 
Hungary 115.73 90.46 8.74 
Malta 24.08 0.00 24.08 
Netherlands 62.13 14.77 47.36 
Poland 79.43 79.43 0.00 
Romania 310.33 307.00 3.33 
Slovenia 2.34 2.09 0.25 
Slovakia 13.33 11.37 1.97 
United Kingdom 90.23 49.53 40.70 
Table 2.

Water abstraction for agriculture irrigation, on average, over the period 2010–2012 (million cubic metres), at national and regional level (fresh surface water).

European Union countriesEuropean Union regionsFresh surface water
Bulgaria Bulgaria 790.35 
Bulgaria Severozapaden 2.20 
Bulgaria Severen tsentralen 23.81 
Bulgaria Severoiztochen 71.32 
Bulgaria Yugoiztochen 176.27 
Bulgaria Yugozapaden 9.01 
Bulgaria Yuzhen tsentralen 507.75 
Czechia Czechia 21.84 
Czechia Praha 0.02 
Czechia Strední Cechy 5.85 
Czechia Jihozápad 0.01 
Czechia Severozápad 1.75 
Czechia Severovýchod 0.49 
Czechia Jihovýchod 13.63 
Czechia Strední Morava 0.09 
Czechia Moravskoslezsko 0.00 
France France  
France Île de France 1.42 
France Champagne-Ardenne 0.82 
France Picardie 1.75 
France Haute-Normandie 0.22 
France Centre 28.20 
France Basse-Normandie 0.66 
France Bourgogne 4.84 
France Nord – Pas-de-Calais 0.50 
France Lorraine 0.02 
France Alsace 7.48 
France Franche-Comté 0.09 
France Pays de la Loire 95.68 
France Bretagne 5.53 
France Poitou-Charentes 52.21 
France Aquitaine 183.60 
France Midi-Pyrénées 285.64 
France Limousin 1.99 
France Rhône-Alpes 151.13 
France Auvergne 27.91 
France Languedoc-Roussillon 316.35 
France Provence-Alpes-Côte d'Azur 626.04 
France Corse 51.73 
Cyprus Cyprus 37.67 
Cyprus Kypros 37.67 
Lithuania Lithuania 0.25 
Lithuania Lietuva 0.00 
Hungary Hungary 98.82 
Hungary Közép-Magyarország 0.63 
Hungary Közép-Dunántúl 1.65 
Hungary Nyugat-Dunántúl 6.10 
Hungary Dél-Dunántúl 1.62 
Hungary Észak-Magyarország 0.77 
Hungary Észak-Alföld 55.51 
Hungary Dél-Alföld 32.55 
Poland Poland 79.42 
Poland Lódzkie 1.21 
Poland Mazowieckie 26.39 
Poland Malopolskie 0.00 
Poland Slaskie 0.00 
Poland Lubelskie 3.96 
Poland Podkarpackie 3.08 
Poland Swietokrzyskie 0.00 
Poland Podlaskie 1.20 
Poland Wielkopolskie 16.64 
Poland Zachodniopomorskie 0.87 
Poland Lubuskie 1.21 
Poland Dolnoslaskie 0.35 
Poland Opolskie 0.21 
Poland Kujawsko-Pomorskie 8.16 
Poland Warminsko-Mazurskie 8.84 
Poland Pomorskie 7.32 
European Union countriesEuropean Union regionsFresh surface water
Bulgaria Bulgaria 790.35 
Bulgaria Severozapaden 2.20 
Bulgaria Severen tsentralen 23.81 
Bulgaria Severoiztochen 71.32 
Bulgaria Yugoiztochen 176.27 
Bulgaria Yugozapaden 9.01 
Bulgaria Yuzhen tsentralen 507.75 
Czechia Czechia 21.84 
Czechia Praha 0.02 
Czechia Strední Cechy 5.85 
Czechia Jihozápad 0.01 
Czechia Severozápad 1.75 
Czechia Severovýchod 0.49 
Czechia Jihovýchod 13.63 
Czechia Strední Morava 0.09 
Czechia Moravskoslezsko 0.00 
France France  
France Île de France 1.42 
France Champagne-Ardenne 0.82 
France Picardie 1.75 
France Haute-Normandie 0.22 
France Centre 28.20 
France Basse-Normandie 0.66 
France Bourgogne 4.84 
France Nord – Pas-de-Calais 0.50 
France Lorraine 0.02 
France Alsace 7.48 
France Franche-Comté 0.09 
France Pays de la Loire 95.68 
France Bretagne 5.53 
France Poitou-Charentes 52.21 
France Aquitaine 183.60 
France Midi-Pyrénées 285.64 
France Limousin 1.99 
France Rhône-Alpes 151.13 
France Auvergne 27.91 
France Languedoc-Roussillon 316.35 
France Provence-Alpes-Côte d'Azur 626.04 
France Corse 51.73 
Cyprus Cyprus 37.67 
Cyprus Kypros 37.67 
Lithuania Lithuania 0.25 
Lithuania Lietuva 0.00 
Hungary Hungary 98.82 
Hungary Közép-Magyarország 0.63 
Hungary Közép-Dunántúl 1.65 
Hungary Nyugat-Dunántúl 6.10 
Hungary Dél-Dunántúl 1.62 
Hungary Észak-Magyarország 0.77 
Hungary Észak-Alföld 55.51 
Hungary Dél-Alföld 32.55 
Poland Poland 79.42 
Poland Lódzkie 1.21 
Poland Mazowieckie 26.39 
Poland Malopolskie 0.00 
Poland Slaskie 0.00 
Poland Lubelskie 3.96 
Poland Podkarpackie 3.08 
Poland Swietokrzyskie 0.00 
Poland Podlaskie 1.20 
Poland Wielkopolskie 16.64 
Poland Zachodniopomorskie 0.87 
Poland Lubuskie 1.21 
Poland Dolnoslaskie 0.35 
Poland Opolskie 0.21 
Poland Kujawsko-Pomorskie 8.16 
Poland Warminsko-Mazurskie 8.84 
Poland Pomorskie 7.32 
Table 3.

Water abstraction for agriculture irrigation, on average, over the period 2010–2012 (million cubic metres), at national and regional level (fresh groundwater).

European Union countriesEuropean Union regionsFresh groundwater
Bulgaria Bulgaria 5.77 
Bulgaria Severozapaden 0.04 
Bulgaria Severen tsentralen 0.18 
Bulgaria Severoiztochen 1.75 
Bulgaria Yugoiztochen 0.00 
Bulgaria Yugozapaden 0.34 
Bulgaria Yuzhen tsentralen 3.46 
France France  
France Île de France 18.62 
France Champagne-Ardenne 21.90 
France Picardie 36.90 
France Haute-Normandie 3.05 
France Centre 251.75 
France Basse-Normandie 2.41 
France Bourgogne 8.12 
France Nord – Pas-de-Calais 6.88 
France Lorraine 0.11 
France Alsace 67.81 
France Franche-Comté 1.46 
France Pays de la Loire 88.33 
France Bretagne 4.04 
France Poitou-Charentes 124.23 
France Aquitaine 317.34 
France Midi-Pyrénées 41.65 
France Limousin 0.21 
France Rhône-Alpes 85.42 
France Auvergne 13.91 
France Languedoc-Roussillon 17.96 
France Provence-Alpes-Côte d'Azur 38.14 
France Corse 0.00 
Cyprus Cyprus 123.00 
Cyprus Kypros 123.00 
Lithuania Lithuania 0.79 
Lithuania Lietuva 1.00 
Hungary Hungary 8.73 
Hungary Közép-Magyarország 0.27 
Hungary Közép-Dunántúl 0.62 
Hungary Nyugat-Dunántúl 1.80 
Hungary Dél-Dunántúl 0.18 
Hungary Észak-Magyarország 1.61 
Hungary Észak-Alföld 0.87 
Hungary Dél-Alföld 3.38 
Malta Malta 24.08 
Malta Malta 24.33 
European Union countriesEuropean Union regionsFresh groundwater
Bulgaria Bulgaria 5.77 
Bulgaria Severozapaden 0.04 
Bulgaria Severen tsentralen 0.18 
Bulgaria Severoiztochen 1.75 
Bulgaria Yugoiztochen 0.00 
Bulgaria Yugozapaden 0.34 
Bulgaria Yuzhen tsentralen 3.46 
France France  
France Île de France 18.62 
France Champagne-Ardenne 21.90 
France Picardie 36.90 
France Haute-Normandie 3.05 
France Centre 251.75 
France Basse-Normandie 2.41 
France Bourgogne 8.12 
France Nord – Pas-de-Calais 6.88 
France Lorraine 0.11 
France Alsace 67.81 
France Franche-Comté 1.46 
France Pays de la Loire 88.33 
France Bretagne 4.04 
France Poitou-Charentes 124.23 
France Aquitaine 317.34 
France Midi-Pyrénées 41.65 
France Limousin 0.21 
France Rhône-Alpes 85.42 
France Auvergne 13.91 
France Languedoc-Roussillon 17.96 
France Provence-Alpes-Côte d'Azur 38.14 
France Corse 0.00 
Cyprus Cyprus 123.00 
Cyprus Kypros 123.00 
Lithuania Lithuania 0.79 
Lithuania Lietuva 1.00 
Hungary Hungary 8.73 
Hungary Közép-Magyarország 0.27 
Hungary Közép-Dunántúl 0.62 
Hungary Nyugat-Dunántúl 1.80 
Hungary Dél-Dunántúl 0.18 
Hungary Észak-Magyarország 1.61 
Hungary Észak-Alföld 0.87 
Hungary Dél-Alföld 3.38 
Malta Malta 24.08 
Malta Malta 24.33 

The countries presented in Table 1 were selected due to the availability of data and this statistical information shows that Spain is where more fresh surface and groundwater is withdrawn for irrigation in the agricultural sector (about 22,394 million cubic metres) followed by France (about 10% of that of Spain), next Bulgaria (796.11 million cubic metres) and Romania (310.33 million cubic metres).

On the other hand, a great part of the water withdrawal was surface water in the majority of the European Union countries considered, except for Denmark, Cyprus, Lithuania, Malta, the Netherlands (where there is the inverse), France and the United Kingdom (where the values are almost the same).

At national and regional levels (NUTS 2), Tables 2 and 3 show a similar pattern to that presented in Table 1 in the relationships between surface and groundwater withdrawal. However, it is important to stress the great diversity of relationships for the French regions (the database does not present values for France, as a country, in the data disaggregated at regional level) when it is compared for surface and groundwater withdrawal. For example, in the Centre (French region) the greatest volume of water withdrawal was from groundwater (251.75 million cubic metres from groundwater and 28.20 million cubic metres from surface) and the inverse happens for Provence-Alpes-Côte d'Azur (626.04 million cubic metres from surface and 38.14 million cubic metres from groundwater).

In turn, within each country, there is also a diversity of realities, showing that the contexts between regions of the same country, with regards to water withdrawal for agricultural irrigation are different and the cluster analysis makes good sense.

For example, concerning water withdrawal from the surface (Table 2), the values for the region Yuzhen Tsentralen in Bulgaria represent almost 65% of the total and for the region Severozapaden only 0.3%. The same may be verified for the French context, where Provence-Alpes-Côte d'Azur reveals the highest values. The same disparities occur for the Hungarian and Polish frameworks.

For water withdrawal from groundwater (Table 3), the differences in the values between European Union regions, within each country, should also be taken into account in the analyses performed in the next section. For example, among the French regions, Centre and Aquitaine withdrawal alone accounts for almost half of the used water for agricultural irrigation.

To better organize the research presented here, namely, so as to avoid presenting too many tables, and considering the availability of data, in this and the next section, only statistical information for fresh surface water at national and regional level and for the year of 2010 will be explored. Fresh groundwater also is important in some European Union countries, as stressed before, but this may be considered in a future study considering the approaches covered here.

To improve understanding about the results presented in this section, Figure 2 shows the evolution of the standard output, utilized agricultural area and labour force across the European Union countries explored in this part of the study. This figure reveals that France and Poland, among the countries considered, are the member-states with higher standard output and utilized agricultural area; however, it stresses the comparatively (considering the values for the standard output and utilized agricultural area) low values for the labour force in France.

Fig. 2.

Standard output, utilized agricultural area and labour force, for the year 2010, at national level.

Fig. 2.

Standard output, utilized agricultural area and labour force, for the year 2010, at national level.

Close modal

The factor and cluster analysis were performed following the Stata (2019) and Torres-Reyna (n.d.) procedures. To avoid problems of multicollinearity, before the cluster analysis the variables through factor investigation were also explored. For factor analysis, variables such as the standard output, utilized agricultural area, directly employed labour force and fresh surface water were considered. For the consideration of these variables, the Cobb–Douglas theory of production developments was taken into account as well as the design of the model for the DEA approach in the next subsequent section, for example, Martinho (2017).

By performing factor analysis the two factors presented in Table 4 were obtained. The main objective of the factor analysis is to find variables (factors) without having potential problems of multicollinearity to be considered for the cluster analysis. In Table 4 ‘variance’ is the total variance in the data explained by each factor, ‘difference’ is the difference between one variance and the next, ‘proportion’ is the per cent of total variance explained by each factor and ‘cumulative’ is the amount of variance explained by the current and all previous factors. In Table 5, the values for factor1 and factor2 show the relevance of each variable for the respective factor. For example, the correlation between the variable standard output for factor1 is 0.937 (values close to 1 represent a higher correlation). The uniqueness reveals the variance of the variable not related with the factors. It is expected to find lower uniqueness (Torres-Reyna, n.d.). In Table 6, the KMO (Kaiser-Meyer-Olkin) test is presented, and for this test, values of at least higher than 0.5 are expected (Filho & da Silva Júnior, 2010).

Table 4.

Factor analysis through principal factors with rotation (orthogonal varimax (Kaiser off)).

FactorVarianceDifferenceProportionCumulative
Factor1 2.732 2.654 0.994 0.994 
Factor2 0.079  0.029 1.023 
FactorVarianceDifferenceProportionCumulative
Factor1 2.732 2.654 0.994 0.994 
Factor2 0.079  0.029 1.023 
Table 5.

Rotated factor loadings (pattern matrix).

VariableFactor1Factor2Uniqueness
Standard output 0.937 −0.058 0.119 
Utilized agricultural area 0.978 0.108 0.032 
Labour force 0.937 0.033 0.121 
Fresh surface water 0.141 0.250 0.918 
VariableFactor1Factor2Uniqueness
Standard output 0.937 −0.058 0.119 
Utilized agricultural area 0.978 0.108 0.032 
Labour force 0.937 0.033 0.121 
Fresh surface water 0.141 0.250 0.918 
Table 6.

Kaiser-Meyer-Olkin measure of sampling adjustment.

VariableKMO
Standard output 0.767 
Utilized agricultural area 0.639 
Labour force 0.771 
Fresh surface water 0.393 
Overall 0.711 
VariableKMO
Standard output 0.767 
Utilized agricultural area 0.639 
Labour force 0.771 
Fresh surface water 0.393 
Overall 0.711 

Table 4 shows that factor1 explains 99% of the total variance verified and Table 5 reveals that this factor1 is mainly defined by the standard output, utilized agricultural area and labour force. The fresh surface water little defines factor1 and the value for the uniqueness of this variable confirms the lower relevance of it for the explanation of the factors obtained. The sampling adequacy analysed in Table 6 also confirms the lower relevance of the fresh surface water for the factor analysis. In any case, the overall Kaiser-Meyer-Olkin for all the variables is 0.711 (acceptable for this test).

Figure 3 obtained through cluster analysis, considering the factor1 as variable, shows that several European Union regions considered in this study may be grouped into three main clusters. In this figure ‘G’ represents the group and ‘n’ the number of observations in each group.

Fig. 3.

Dendrogram to identify the number of main clusters.

Fig. 3.

Dendrogram to identify the number of main clusters.

Close modal

The results presented in Table 7, obtained following Stata (2019) procedures for cluster analysis, for the three clusters already identified reveal that in cluster 1 it is possible to find Bulgaria, the Czech Republic, Lithuania, Hungary and some regions from France and from Poland. Poland appears alone in cluster 2, showing a context which is different to the other regions and countries.

Table 7.

Cluster obtained for the countries and regions considered in this study.

CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface waterClusters
Bulgaria Bulgaria 2.54 × 109 4,475,530 406,520 749.600 
Czechia Czechia 3.85 × 109 3,483,500 107,990 19.440 
France Champagne-Ardenne 4.36 × 109 1,536,950 38,740 0.970 
France Centre 3.00 × 109 2,311,400 37,380 29.070 
France Bourgogne 2.59 × 109 1,762,610 34,370 4.720 
France Pays de la Loire 5.18 × 109 2,103,390 64,460 108.990 
France Bretagne 5.83 × 109 1,639,840 57,390 7.090 
France Poitou-Charentes 2.76 × 109 1,721,280 36,010 58.690 
France Aquitaine 3.91 × 109 1,477,320 72,720 184.070 
France Midi-Pyrénées 2.77 × 109 2,540,090 60,580 286.350 
France Rhône-Alpes 2.41 × 109 1,516,680 58,410 142.650 
Lithuania Lithuania 1.53 × 109 2,742,560 146,770 0.300 
Lithuania Lietuva 1.53 × 109 2,742,560 146,770 0.000 
Hungary Hungary 5.24 × 109 4,686,340 423,490 82.470 
Poland Mazowieckie 2.80 × 109 1,834,790 285,900 23.960 
Poland Lubelskie 1.55 × 109 1,356,740 235,220 3.000 
Poland Wielkopolskie 2.98 × 109 1,722,000 181,910 16.560 
Poland Poland 1.90 × 1010 14,447,290 1,897,240 75.070 
Bulgaria Severozapaden 4.25 × 108 881,670 50,720 1.300 
Bulgaria Severen tsentralen 4.62 × 108 806,130 51,890 16.920 
Bulgaria Severoiztochen 4.55 × 108 804,550 53,140 67.130 
Bulgaria Yugoiztochen 4.87 × 108 874,260 59,340 130.770 
Bulgaria Yugozapaden 2.04 × 108 480,870 64,610 6.170 
Bulgaria Yuzhen tsentralen 5.04 × 108 628,040 126,810 527.310 
Czechia Praha 23034070 11,100 340 0.030 
Czechia Strední Cechy 6.47 × 108 554,520 15,410 6.140 
Czechia Jihozápad 7.26 × 108 732,170 19,950 0.010 
Czechia Severozápad 2.41 × 108 318,850 7,050 1.760 
Czechia Severovýchod 6.39 × 108 559,120 19,410 0.540 
Czechia Jihovýchod 9.81 × 108 714,590 26,200 10.860 
Czechia Strední Morava 3.95 × 108 384,990 12,770 0.100 
Czechia Moravskoslezsko 2.01 × 108 208,150 6,860 0.000 
France Île de France 8.09 × 108 568,840 9,000 1.450 
France Picardie 2.31 × 109 1,328,370 22,720 1.460 
France Haute-Normandie 1.22 × 109 774,550 14,920 0.220 
France Basse-Normandie 1.99 × 109 1,210,810 30,700 0.740 
France Nord – Pas-de-Calais 1.85 × 109 817,990 22,840 0.500 
France Lorraine 1.29 × 109 1,138,400 18,300 0.000 
France Alsace 1.04 × 109 336,770 16,640 7.290 
France Franche-Comté 8.09 × 108 667,190 14,040 0.190 
France Limousin 7.08 × 108 838,760 19,160 1.950 
France Auvergne 1.33 × 109 1,469,490 31,840 21.440 
France Languedoc-Roussillon 1.74 × 109 956,590 41,980 297.880 
France Provence-Alpes-Côte d'Azur 1.84 × 109 815,450 39,290 630.650 
France Corse 1.81 × 108 179,940 4,050 45.140 
Cyprus Cyprus 4.72 × 108 118,400 18,590 36.400 
Cyprus Kypros 4.72 × 108 118,400 18,590 36.400 
Hungary Közép-Magyarország 2.77 × 108 259,570 33,020 0.300 
Hungary Közép-Dunántúl 6.08 × 108 531,170 42,140 0.360 
Hungary Nyugat-Dunántúl 6.13 × 108 524,370 44,350 1.190 
Hungary Dél-Dunántúl 7.59 × 108 689,440 54,050 0.650 
Hungary Észak-Magyarország 4.25 × 108 523,270 48,640 0.120 
Hungary Észak-Alföld 1.17 × 109 1,051,090 95,470 57.360 
Hungary Dél-Alföld 1.39 × 109 1,107,420 105,820 22.490 
Poland Lódzkie 1.42 × 109 957,060 165,820 1.730 
Poland Malopolskie 7.78 × 108 565,200 188,440 0.000 
Poland Slaskie 5.45 × 108 357,310 65,530 0.000 
Poland Podkarpackie 6.04 × 108 569,520 152,160 3.600 
Poland Swietokrzyskie 6.72 × 108 503,000 126,250 0.000 
Poland Podlaskie 1.26 × 109 1,031,750 110,840 1.060 
Poland Zachodniopomorskie 9.49 × 108 897,290 37,970 0.790 
Poland Lubuskie 4.51 × 108 417,700 25,350 1.130 
Poland Dolnoslaskie 8.97 × 108 909,470 68,700 0.340 
Poland Opolskie 6.02 × 108 509,060 37,520 0.040 
Poland Kujawsko-Pomorskie 1.52 × 109 1,055,670 98,040 6.830 
Poland Warminsko-Mazurskie 1.12 × 109 1,028,820 60,960 8.760 
Poland Pomorskie 8.32 × 108 731,930 56,640 7.270 
CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface waterClusters
Bulgaria Bulgaria 2.54 × 109 4,475,530 406,520 749.600 
Czechia Czechia 3.85 × 109 3,483,500 107,990 19.440 
France Champagne-Ardenne 4.36 × 109 1,536,950 38,740 0.970 
France Centre 3.00 × 109 2,311,400 37,380 29.070 
France Bourgogne 2.59 × 109 1,762,610 34,370 4.720 
France Pays de la Loire 5.18 × 109 2,103,390 64,460 108.990 
France Bretagne 5.83 × 109 1,639,840 57,390 7.090 
France Poitou-Charentes 2.76 × 109 1,721,280 36,010 58.690 
France Aquitaine 3.91 × 109 1,477,320 72,720 184.070 
France Midi-Pyrénées 2.77 × 109 2,540,090 60,580 286.350 
France Rhône-Alpes 2.41 × 109 1,516,680 58,410 142.650 
Lithuania Lithuania 1.53 × 109 2,742,560 146,770 0.300 
Lithuania Lietuva 1.53 × 109 2,742,560 146,770 0.000 
Hungary Hungary 5.24 × 109 4,686,340 423,490 82.470 
Poland Mazowieckie 2.80 × 109 1,834,790 285,900 23.960 
Poland Lubelskie 1.55 × 109 1,356,740 235,220 3.000 
Poland Wielkopolskie 2.98 × 109 1,722,000 181,910 16.560 
Poland Poland 1.90 × 1010 14,447,290 1,897,240 75.070 
Bulgaria Severozapaden 4.25 × 108 881,670 50,720 1.300 
Bulgaria Severen tsentralen 4.62 × 108 806,130 51,890 16.920 
Bulgaria Severoiztochen 4.55 × 108 804,550 53,140 67.130 
Bulgaria Yugoiztochen 4.87 × 108 874,260 59,340 130.770 
Bulgaria Yugozapaden 2.04 × 108 480,870 64,610 6.170 
Bulgaria Yuzhen tsentralen 5.04 × 108 628,040 126,810 527.310 
Czechia Praha 23034070 11,100 340 0.030 
Czechia Strední Cechy 6.47 × 108 554,520 15,410 6.140 
Czechia Jihozápad 7.26 × 108 732,170 19,950 0.010 
Czechia Severozápad 2.41 × 108 318,850 7,050 1.760 
Czechia Severovýchod 6.39 × 108 559,120 19,410 0.540 
Czechia Jihovýchod 9.81 × 108 714,590 26,200 10.860 
Czechia Strední Morava 3.95 × 108 384,990 12,770 0.100 
Czechia Moravskoslezsko 2.01 × 108 208,150 6,860 0.000 
France Île de France 8.09 × 108 568,840 9,000 1.450 
France Picardie 2.31 × 109 1,328,370 22,720 1.460 
France Haute-Normandie 1.22 × 109 774,550 14,920 0.220 
France Basse-Normandie 1.99 × 109 1,210,810 30,700 0.740 
France Nord – Pas-de-Calais 1.85 × 109 817,990 22,840 0.500 
France Lorraine 1.29 × 109 1,138,400 18,300 0.000 
France Alsace 1.04 × 109 336,770 16,640 7.290 
France Franche-Comté 8.09 × 108 667,190 14,040 0.190 
France Limousin 7.08 × 108 838,760 19,160 1.950 
France Auvergne 1.33 × 109 1,469,490 31,840 21.440 
France Languedoc-Roussillon 1.74 × 109 956,590 41,980 297.880 
France Provence-Alpes-Côte d'Azur 1.84 × 109 815,450 39,290 630.650 
France Corse 1.81 × 108 179,940 4,050 45.140 
Cyprus Cyprus 4.72 × 108 118,400 18,590 36.400 
Cyprus Kypros 4.72 × 108 118,400 18,590 36.400 
Hungary Közép-Magyarország 2.77 × 108 259,570 33,020 0.300 
Hungary Közép-Dunántúl 6.08 × 108 531,170 42,140 0.360 
Hungary Nyugat-Dunántúl 6.13 × 108 524,370 44,350 1.190 
Hungary Dél-Dunántúl 7.59 × 108 689,440 54,050 0.650 
Hungary Észak-Magyarország 4.25 × 108 523,270 48,640 0.120 
Hungary Észak-Alföld 1.17 × 109 1,051,090 95,470 57.360 
Hungary Dél-Alföld 1.39 × 109 1,107,420 105,820 22.490 
Poland Lódzkie 1.42 × 109 957,060 165,820 1.730 
Poland Malopolskie 7.78 × 108 565,200 188,440 0.000 
Poland Slaskie 5.45 × 108 357,310 65,530 0.000 
Poland Podkarpackie 6.04 × 108 569,520 152,160 3.600 
Poland Swietokrzyskie 6.72 × 108 503,000 126,250 0.000 
Poland Podlaskie 1.26 × 109 1,031,750 110,840 1.060 
Poland Zachodniopomorskie 9.49 × 108 897,290 37,970 0.790 
Poland Lubuskie 4.51 × 108 417,700 25,350 1.130 
Poland Dolnoslaskie 8.97 × 108 909,470 68,700 0.340 
Poland Opolskie 6.02 × 108 509,060 37,520 0.040 
Poland Kujawsko-Pomorskie 1.52 × 109 1,055,670 98,040 6.830 
Poland Warminsko-Mazurskie 1.12 × 109 1,028,820 60,960 8.760 
Poland Pomorskie 8.32 × 108 731,930 56,640 7.270 

Note: Standard output in euros; utilized agricultural area in hectares; labour force directly employed in annual work unit; fresh surface water in million cubic metres.

In cluster 3 it is possible to find Cyprus, the regions from Bulgaria, the Czech Republic and Hungary and the remaining regions from France and Poland.

The DEA in this section was performed through DEAP (2019) software, considering a model based on the Cobb–Douglas developments, where the output is the standard output (euros) and the inputs are the utilized agricultural area (in hectares and as a proxy for the capital), the labour (annual work units) and the fresh surface water withdrawal (million cubic metres) for farming irrigation (to analyse the possibility of efficient savings for agricultural research). All these variables were considered disaggregated at national and regional level and only to 2010 (for better compatibility of several series). The selection of the countries and regions was also constrained by the availability of data in the mainstream databases.

The mathematical formulation to perform the DEA analysis based on the Cobb–Douglas model described before is well described, for example, in Coelli (1998).

This analysis will only apply to clusters 1 and 3 identified in the previous section, because for cluster 2 there was only Poland found as DMU. An analysis oriented input was considered, with variable returns to scale and DEA multi-stage.

Table 8 demonstrates that it is possible to improve the output of Bulgaria, the Czech Republic, Lithuania and of regions from France (Poitou-Charentes, Midi-Pyrénées, Rhône-Alpes). For example, in Rhône-Alpes it is possible to efficiently improve the standard output by about 70%. On the other hand, the French regions of Champagne-Ardenne, Bourgogne, Bretagne, Aquitaine and the Polish region of Lubelskie seem to be those which are more efficient in cluster 1. Specifically for the surface water withdrawal for agricultural irrigation, the situation is more critical for the French region; Centre, Pays de la Loire, Poitou-Charentes and Midi-Pyrénées where almost 100% of the water withdrawal could be saved (since the projected values are almost 0% of the original values). It is worth noting that the Bulgarian and Hungarian global contexts deserve special attention from the several stakeholders. In general, the frameworks for the utilized agricultural area and labour force follow a similar pattern and are not so problematic as those shown for fresh surface water. In any case, the Bulgarian, Czech and Hungarian contexts, for example, reveal that it is potentially possible to improve significantly the efficiency in the area and labour use.

Table 8.

Percentages (%) between the projected values by DEA and the original (cluster 1).

CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface water
Bulgaria Bulgaria 121 32 32 16 
Czechia Czechia 110 44 44 44 
France Champagne-Ardenne 100 100 100 100 
France Centre 100 74 95 13 
France Bourgogne 100 100 100 100 
France Pays de la Loire 100 76 76 
France Bretagne 100 100 100 100 
France Poitou-Charentes 111 99 99 
France Aquitaine 100 100 100 100 
France Midi-Pyrénées 143 62 62 
France Rhône-Alpes 170 99 99 73 
Lithuania Lithuania 151 88 80 88 
Lithuania Lietuva 100 100 100 100 
Hungary Hungary 100 34 13 34 
Poland Mazowieckie 100 78 52 78 
Poland Lubelskie 100 100 100 100 
Poland Wielkopolskie 100 84 74 84 
CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface water
Bulgaria Bulgaria 121 32 32 16 
Czechia Czechia 110 44 44 44 
France Champagne-Ardenne 100 100 100 100 
France Centre 100 74 95 13 
France Bourgogne 100 100 100 100 
France Pays de la Loire 100 76 76 
France Bretagne 100 100 100 100 
France Poitou-Charentes 111 99 99 
France Aquitaine 100 100 100 100 
France Midi-Pyrénées 143 62 62 
France Rhône-Alpes 170 99 99 73 
Lithuania Lithuania 151 88 80 88 
Lithuania Lietuva 100 100 100 100 
Hungary Hungary 100 34 13 34 
Poland Mazowieckie 100 78 52 78 
Poland Lubelskie 100 100 100 100 
Poland Wielkopolskie 100 84 74 84 

For cluster 3, Table 9 shows that two regions from the Czech Republic (Praha and Moravskoslezsko), several regions from France, Cyprus and two Polish regions (Malopolskie and Slaskie) are the most efficient DMU. Concerning water withdrawal for agricultural irrigation the more dramatic cases are those from the Bulgarian regions (as it is for the other inputs, confirming the findings stressed for Table 8), some regions from Czech Republic (Strední Cechy and Severozápad, for example), some French regions (Auvergne, Languedoc-Roussillon, Provence-Alpes-Côte d'Azur and Corse) and the Hungarian regions of Észak-Alföld and Dél-Alföld. As referred to before, for cluster 1, in general, the contexts for the utilized agricultural area and labour force display a similar picture and are not so problematic as those presented for surface water; however, in some cases, the potentialities for savings in the labour force are more relevant, namely, in the Hungarian and Polish regions. This is also observable in Table 8 and in Figure 2.

Table 9.

Percentages (%) between the projected values by DEA and the original (cluster 3).

CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface water
Bulgaria Severozapaden 100 21 11 21 
Bulgaria Severen tsentralen 100 19 14 19 
Bulgaria Severoiztochen 100 18 18 14 
Bulgaria Yugoiztochen 100 17 17 
Bulgaria Yugozapaden 100 16 16 
Bulgaria Yuzhen tsentralen 100 21 15 
Czechia Praha 100 100 100 100 
Czechia Strední Cechy 100 52 52 
Czechia Jihozápad 100 86 86 90 
Czechia Severozápad 100 39 39 
Czechia Severovýchod 100 50 41 50 
Czechia Jihovýchod 100 53 53 32 
Czechia Strední Morava 100 67 67 67 
Czechia Moravskoslezsko 100 100 100 100 
France Île de France 100 81 89 36 
France Picardie 100 100 100 100 
France Haute-Normandie 100 100 100 100 
France Basse-Normandie 100 100 100 100 
France Nord – Pas-de-Calais 100 100 100 100 
France Lorraine 100 100 100 100 
France Alsace 100 100 100 100 
France Franche-Comté 100 75 75 75 
France Limousin 100 42 42 16 
France Auvergne 100 46 46 
France Languedoc-Roussillon 100 79 52 
France Provence-Alpes-Côte d'Azur 100 99 58 
France Corse 100 51 51 
Cyprus Cyprus 100 100 100 100 
Cyprus Kypros 100 100 100 100 
Hungary Közép-Magyarország 100 47 11 47 
Hungary Közép-Dunántúl 100 51 18 51 
Hungary Nyugat-Dunántúl 100 50 18 50 
Hungary Dél-Dunántúl 100 48 17 48 
Hungary Észak-Magyarország 100 50 50 50 
Hungary Észak-Alföld 100 39 18 11 
Hungary Dél-Alföld 100 49 18 19 
Poland Lódzkie 100 64 11 64 
Poland Malopolskie 100 100 100 100 
Poland Slaskie 100 100 100 100 
Poland Podkarpackie 100 43 43 
Poland Swietokrzyskie 100 94 94 100 
Poland Podlaskie 100 54 14 54 
Poland Zachodniopomorskie 100 47 31 46 
Poland Lubuskie 100 46 23 46 
Poland Dolnoslaskie 100 51 51 51 
Poland Opolskie 100 86 86 85 
Poland Kujawsko-Pomorskie 100 59 21 48 
Poland Warminsko-Mazurskie 100 42 26 42 
Poland Pomorskie 100 43 21 43 
CountryRegionStandard outputUtilized agricultural areaLabour force directly employedFresh surface water
Bulgaria Severozapaden 100 21 11 21 
Bulgaria Severen tsentralen 100 19 14 19 
Bulgaria Severoiztochen 100 18 18 14 
Bulgaria Yugoiztochen 100 17 17 
Bulgaria Yugozapaden 100 16 16 
Bulgaria Yuzhen tsentralen 100 21 15 
Czechia Praha 100 100 100 100 
Czechia Strední Cechy 100 52 52 
Czechia Jihozápad 100 86 86 90 
Czechia Severozápad 100 39 39 
Czechia Severovýchod 100 50 41 50 
Czechia Jihovýchod 100 53 53 32 
Czechia Strední Morava 100 67 67 67 
Czechia Moravskoslezsko 100 100 100 100 
France Île de France 100 81 89 36 
France Picardie 100 100 100 100 
France Haute-Normandie 100 100 100 100 
France Basse-Normandie 100 100 100 100 
France Nord – Pas-de-Calais 100 100 100 100 
France Lorraine 100 100 100 100 
France Alsace 100 100 100 100 
France Franche-Comté 100 75 75 75 
France Limousin 100 42 42 16 
France Auvergne 100 46 46 
France Languedoc-Roussillon 100 79 52 
France Provence-Alpes-Côte d'Azur 100 99 58 
France Corse 100 51 51 
Cyprus Cyprus 100 100 100 100 
Cyprus Kypros 100 100 100 100 
Hungary Közép-Magyarország 100 47 11 47 
Hungary Közép-Dunántúl 100 51 18 51 
Hungary Nyugat-Dunántúl 100 50 18 50 
Hungary Dél-Dunántúl 100 48 17 48 
Hungary Észak-Magyarország 100 50 50 50 
Hungary Észak-Alföld 100 39 18 11 
Hungary Dél-Alföld 100 49 18 19 
Poland Lódzkie 100 64 11 64 
Poland Malopolskie 100 100 100 100 
Poland Slaskie 100 100 100 100 
Poland Podkarpackie 100 43 43 
Poland Swietokrzyskie 100 94 94 100 
Poland Podlaskie 100 54 14 54 
Poland Zachodniopomorskie 100 47 31 46 
Poland Lubuskie 100 46 23 46 
Poland Dolnoslaskie 100 51 51 51 
Poland Opolskie 100 86 86 85 
Poland Kujawsko-Pomorskie 100 59 21 48 
Poland Warminsko-Mazurskie 100 42 26 42 
Poland Pomorskie 100 43 21 43 

Of course, despite cluster analysis being done to obtain homogeneous DMUs, following, for instance, Martinho (2020), there are still significant differences between the regions and countries considered in each cluster. In any case, the results presented and discussed here may provide an interesting base for the several stakeholders, namely, farmers and policymakers, in line with that argued, for example, by Salmoral et al. (2017). These findings may allow implementation of new and adjusted strategies to improve water withdrawal for agricultural irrigation, with relevant positive externalities for the environment and economic sustainability for farms.

Indeed, the amount of water withdrawal for agricultural irrigation and how effectively it is used, as shown in the statistics from the Eurostat, should be a motive for concern, as stressed by the Aquastat (2019). In general, the surface water and, in some cases, the labour force, are used less efficiently in the agricultural sector than, for example, the utilized agricultural area. The efficient use of water depends, in fact, on several factors, as stressed by Nazari et al. (2018).

The more dramatic cases are those from some French regions and from the Bulgarian and Hungarian contexts. The French context is paradoxical, because it has the most and less efficient regions, for surface water use for agricultural irrigation. Nonetheless, the French efficiency weaknesses are more focused on the surface water withdrawal and the Bulgarian and Hungarian fragilities are more scattered over the farm structures, involving the area and the labour management. This context highlights the diversity of realities inside the European Union, as shown by Martinho (2017).

The main objective of this study was to analyse the efficiency in water withdrawal for agricultural irrigation in the regions and countries of the European Union. For this, qualitative analysis of the literature was performed and statistical information from the Eurostat was considered over the period 2010–2012. These data were analysed through DEA, after factor and cluster analysis. The factor analysis allowed factors to be obtained without presenting problems of multicollinearity and the cluster analysis allowed for finding groups of more homogeneous DMUs (important aspects for the efficiency of the investigation). The variables considered were the standard output (as output), the utilized agricultural area, the labour and the water withdrawal. For water withdrawal, two series were considered, one for the fresh surface water and the other for fresh groundwater. Considering the difficulties in finding robust series for the water withdrawal, the factor, cluster and DEA analyses were performed only considering fresh surface water, for the year of 2010 and for the countries and regions with statistical information in the Eurostat. In fact, it will be important that public institutions improve the availability of statistical information concerning water withdrawal and its use by the agricultural sector.

The literature review, complemented with bibliometric analysis through the Atlas.ti software, highlights the following three main topics about efficient water management in the agricultural sector: irrigation efficiency, water shortage and water quantification. In fact, it is fundamental to improve irrigation efficiency, namely, with new approaches and technologies, where farmers have a determinant role. The questions regarding improvements in water efficiency gain more relevance when the water scarcity or shortage increases due to climate change and global warming. The new approaches for water quantification may also provide an important contribution.

It is important to highlight in this section that the data analysis shows that a relevant part of the water withdrawal for agricultural irrigation is from fresh surface water and that the factor and cluster analysis allowed identification of three clusters for the countries and regions considered in this study (the selection was constrained by the availability of statistical information in the mainstream databases).

Finally, the data envelopment analysis reveals that there are interesting cases of efficiency (including water withdrawal efficiency) that should be considered as references in a process of benchmarking that could be performed within the European Union, considering the specificities of the agricultural sector and the importance of an efficient management of water. On the other hand, there are some cases that deserve special attention, such as those, for example, from Bulgaria and some French regions, where, in some circumstances, almost 100% of the water withdrawal could be saved (of course, in an optimized perspective).

This study highlighted the main aspects related to efficient water management in the agricultural sector, making it possible to identify European countries and regions that may be considered as benchmarks for the less efficient regions and quantifying the potential possibilities of savings in the area, labour and farm water use. The main limitation of this work is related to the availability of statistical information in the mainstream databases. In future research, the approaches presented in this study may be applied to other parts of the world outside the European Union, by benchmarking the results obtained with those demonstrated here.

This work is financed by national funds through FCT – Fundação para a Ciência e Tecnologia, I.P., under the project UID/Multi/04016/2019. Furthermore we would like to thank the Instituto Politécnico de Viseu and CI&DETS for their support. This work is supported by national funds, through the FCT – Portuguese Foundation for Science and Technology under the project UID/SOC/04011/2019.

Alcon
F.
Pedrero
F.
Martin-Ortega
J.
Arcas
N.
Alarcon
J. J.
de Miguel
M. D.
(
2010
).
The non-market value of reclaimed wastewater for use in agriculture: a contingent valuation approach
.
Spanish Journal of Agricultural Research
8
,
S187
S196
.
Ali
M. K.
Klein
K. K.
(
2014
).
Water use efficiency and productivity of the irrigation districts in southern Alberta
.
Water Resources Management
28
,
2751
2766
.
https://doi.org/10.1007/s11269-014-0634-y
.
Aly
A.
Froehlich
K.
Nada
A.
Awad
M.
Hamza
M.
Salem
W.
(
1993
).
Study of environmental isotope distribution in the Aswan-High-Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater
.
Environmental Geochemistry and Health
15
,
37
49
.
https://doi.org/10.1007/BF00146291
.
Aquastat
(
2019
).
Water use [WWW Document]
. Available at: http://www.fao.org/aquastat/en/overview/methodology/water-use (accessed 12 December 23 2019)
.
Atasever
U. H.
Ozkan
C.
(
2018
).
A new SEBAL approach modified with backtracking search algorithm for actual evapotranspiration mapping and on-site application
.
Journal of the Indian Society of Remote Sensing
46
,
1213
1222
.
https://doi.org/10.1007/s12524-018-0816-9
.
Atlas.ti
(
2019
).
ATLAS.ti: The Qualitative Data Analysis & Research Software [WWW Document]
.
Available at
:
https://atlasti.com/ (accessed 3 July 2019)
.
Barrett
J.
Skogerboe
G.
(
1980
).
Crop production-functions and the allocation and use of irrigation water
.
Agricultural Water Management
3
,
53
64
.
https://doi.org/10.1016/0378-3774(80)90015-3
.
Cassel
D.
Bauer
A.
Whited
D.
(
1978
).
Management of irrigated soybeans on a moderately coarse-textured soil in upper Midwest
.
Agronomy Journal
70
,
100
104
.
https://doi.org/10.2134/agronj1978.00021962007000010023x
.
Castanedo
V.
Saucedo
H.
Fuentes
C.
(
2013
).
Comparison between a hydrodynamic full model and a hydrologic model in border irrigation
.
Agrociencia
47
,
209
223
.
Chandio
A. S.
Lee
T. S.
Mirjat
M. S.
(
2013
).
Simulation of horizontal and vertical drainage systems to combat waterlogging problems along the Rohri Canal in Khairpur District, Pakistan
.
Journal of Irrigation and Drainage Engineering
139
,
710
717
.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000590
.
Chavez
J. L.
Gowda
P. H.
Howell
T. A.
Copeland
K. S.
(
2009
).
Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation
.
International Journal of Remote Sensing
30
,
2337
2354
.
https://doi.org/10.1080/01431160802549393
.
Cobb
C. W.
Douglas
P. H.
(
1928
).
A theory of production
.
The American Economic Review
18
,
139
165
.
Coelli
T.
(
1998
).
A multi-stage methodology for the solution of orientated DEA models
.
Operations Research Letters
23
,
143
149
.
https://doi.org/10.1016/S0167-6377(98)00036-4
.
Constanza Daza-Torres
M.
Cesar Arias-Prado
P.
Reyes-Trujillo
A.
Urrutia-Cobo
N.
(
2017
).
Basil (Ocimum basilicum L.) water needs calculated from the crop coefficient
.
Ingenieria E Investigacion
37
,
8
16
.
https://doi.org/10.15446/ing.investig.v37n3.65058
.
D'Agostino
D. R.
Scardigno
A.
Lamaddalena
N.
El Chami
D.
(
2014
).
Sensitivity analysis of coupled hydro-economic models: quantifying climate change uncertainty for decision-making
.
Water Resources Management
28
,
4303
4318
.
https://doi.org/10.1007/s11269-014-0748-2
.
DEAP
(
2019
).
A Data Envelopment Analysis (Computer) Program [WWW Document]
.
Available at: https://economics.uq.edu.au/cepa/software (accessed 3 July 2019)
.
Deng
S.
Yin
Q.
Zhang
S.
Shi
K.
Jia
Z.
Ma
L.
(
2017
).
Drip irrigation affects the morphology and distribution of olive roots
.
Hortscience
52
,
1298
1306
.
https://doi.org/10.21273/HORTSCI11997-17
.
Dono
G.
Giraldo
L.
Severini
S.
(
2010
).
Pricing of irrigation water under alternative charging methods: possible shortcomings of a volumetric approach
.
Agricultural Water Management
97
,
1795
1805
.
https://doi.org/10.1016/j.agwat.2010.06.013
.
Esteban
E.
Dinar
A.
Albiac
J.
Calera
A.
Garcia-Molla
M.
Avella
L.
(
2018
).
Interest group perceptions on water policy reforms: insight from a water-stressed basin
.
Water Policy
20
,
794
810
.
https://doi.org/10.2166/wp.2018.114
.
Eurostat
(
2019
).
Database – Eurostat [WWW Document]
.
Available at: https://ec.europa.eu/eurostat/data/database (accessed 3 July 2019)
.
Fatemi
S. M.
Mohammed
T. A.
Soom
M. A. B. M.
(
2011
).
Proposed model for efficient water management at Razmgan irrigation project, a semi-arid region in Khorasan, Iran
.
African Journal of Agricultural Research
6
,
3203
3216
.
Filho
D. B. F.
da Silva Júnior
J. A.
(
2010
).
Visão além do alcance: uma introdução à análise fatorial
.
Opinião Pública
16
,
160
185
.
https://doi.org/10.1590/S0104-62762010000100007
.
Gassmann
M.
Gardiol
J.
Serio
L.
(
2011
).
Performance evaluation of evapotranspiration estimations in a model of soil water balance
.
Meteorological Applications
18
,
211
222
.
https://doi.org/10.1002/met.231
.
Githinji
L. J. M.
Dane
J. H.
Walker
R. H.
(
2009
).
Water-use patterns of tall fescue and hybrid bluegrass cultivars subjected to ET-based irrigation scheduling
.
Irrigation Science
27
,
377
391
.
https://doi.org/10.1007/s00271-009-0153-4
.
Gonzalo-Martin
C.
Lillo-Saavedra
M.
Garcia-Pedrero
A.
Lagos
O.
Menasalvas
E.
(
2017
).
Daily evapotranspiration mapping using regression random forest models
.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
10
,
5359
5368
.
https://doi.org/10.1109/JSTARS.2017.2733958
.
Graveline
N.
Merel
P.
(
2014
).
Intensive and extensive margin adjustments to water scarcity in France's Cereal Belt
.
European Review of Agricultural Economics
41
,
707
743
.
https://doi.org/10.1093/erae/jbt039
.
Haofang
Y.
Chuan
Z.
Oue
H.
Guangjie
P.
Darko
R. O.
(
2017
).
Determination of crop and soil evaporation coefficients for estimating evapotranspiration in a paddy field
.
International Journal of Agricultural and Biological Engineering
10
,
130
139
.
https://doi.org/10.25165/j.ijabe.20171004.2290
.
Hundal
S.
Dedatta
S.
(
1984
).
In situ water transmission characteristics of a tropical soil under rice-based cropping systems
.
Agricultural Water Management
8
,
387
396
.
https://doi.org/10.1016/0378-3774(84)90066-0
.
Ismail
S. M.
Ozawa
K.
Khondaker
N. A.
(
2008
).
Influence of single and multiple water application timings on yield and water use efficiency in tomato (var. First power)
.
Agricultural Water Management
95
,
116
122
.
https://doi.org/10.1016/j.agwat.2007.09.006
.
Jin
Y.
He
R.
Marino
G.
Whiting
M.
Kent
E.
Sanden
B. L.
Culumber
M.
Ferguson
L.
Little
C.
Grattan
S.
Paw
K. T. U.
Lagos
L. O.
Snyder
R. L.
Zaccaria
D.
(
2018
).
Spatially variable evapotranspiration over salt affected pistachio orchards analyzed with satellite remote sensing estimates
.
Agricultural and Forest Meteorology
262
,
178
191
.
https://doi.org/10.1016/j.agrformet.2018.07.004
.
Kahil
M. T.
Connor
J. D.
Albiac
J.
(
2015
).
Efficient water management policies for irrigation adaptation to climate change in Southern Europe
.
Ecological Economics
120
,
226
233
.
https://doi.org/10.1016/j.ecolecon.2015.11.004
.
Kim
Y.
Evans
R. G.
(
2009
).
Software design for wireless sensor-based site-specific irrigation
.
Computers and Electronics in Agriculture
66
,
159
165
.
https://doi.org/10.1016/j.compag.2009.01.007
.
Kim
Y.
Evans
R. G.
Iversen
W. M.
(
2008
).
Remote sensing and control of an irrigation system using a distributed wireless sensor network
.
IEEE Transactions on Instrumentation and Measurement
57
,
1379
1387
.
https://doi.org/10.1109/TIM.2008.917198
.
Kim
D.-J.
Han
K.-H.
Zhang
Y.-S.
Cho
H.-R.
Hwang
S.-A.
Ok
J.-H.
Choi
K.-S.
Choi
J.-S.
(
2018
).
Evaluation of evapotranspiration in different paddy soils using weighable lysimeter before flooding stage
.
Korean Journal of Soil Science & Fertilizer
51
,
510
521
.
https://doi.org/10.7745/KJSSF.2018.51.4.510
.
Kinzli
K.-D.
Gensler
D.
DeJonge
K.
Oad
R.
Shafike
N.
(
2015
).
Validation of a decision support system for improving irrigation system performance
.
Journal of Irrigation and Drainage Engineering
141
.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000829
Kumar
R.
(
2013
).
Ecohydrologic modeling of crop evapotranspiration in wheat (Triticum-aestivum) at sub-temperate and sub-humid region of India
.
International Journal of Agricultural and Biological Engineering
6
,
19
26
.
https://doi.org/10.3965/j.ijabe.20130604.003
.
Kumar
R.
Singh
J.
(
2003
).
Regional water management modeling for decision support in irrigated agriculture
.
Journal of Irrigation and Drainage Engineering
129
,
432
439
.
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:6(432)
.
Kumar
M.
Kumar
N.
Singh
K. P.
Kumar
P.
Srinivas
K.
Srivastva
A. K.
(
2009
).
Integrating water harvesting and gravity-fed micro-irrigation system for efficient water management in terraced land for growing vegetables
.
Biosystems Engineering
102
,
106
113
.
https://doi.org/10.1016/j.biosystemseng.2008.09.026
.
Kumar
R.
Jat
M. K.
Shankar
V.
(
2012
).
Methods to estimate irrigated reference crop evapotranspiration – a review
.
Water Science and Technology
66
(
3
),
525
535
.
https://doi.org/10.2166/wst.2012.191
.
Lanari
V.
Palliotti
A.
Sabbatini
P.
Howell
G. S.
Silvestroni
O.
(
2014
).
Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown ‘Sangiovese’ (Vitis vinifera L.) grapevines
.
Scientia Horticulturae
179
,
239
247
.
https://doi.org/10.1016/j.scienta.2014.09.032
.
Lee
T.
Kim
S.
Shin
Y.
(
2018
).
Development of landsat-based downscaling algorithm for SMAP soil moisture footprints
.
Journal of the Korean Society of Agricultural Engineers
60
,
49
54
.
https://doi.org/10.5389/KSAE.2018.60.4.049
.
Levidow
L.
Zaccaria
D.
Maia
R.
Vivas
E.
Todorovic
M.
Scardigno
A.
(
2014
).
Improving water-efficient irrigation: prospects and difficulties of innovative practices
.
Agricultural Water Management
146
,
84
94
.
https://doi.org/10.1016/j.agwat.2014.07.012
.
Liu
X.
Kang
S.
Li
F.
(
2009
).
Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression
.
Agricultural Water Management
96
,
939
945
.
https://doi.org/10.1016/j.agwat.2009.01.003
.
Marston
L.
Cai
X.
(
2016
).
An overview of water reallocation and the barriers to its implementation
.
Wiley Interdisciplinary Reviews-Water
3
,
658
677
.
https://doi.org/10.1002/wat2.1159
.
Martinho
V. J. P. D.
(
2020
).
Comparative analysis of energy costs on farms in the European Union: a nonparametric approach
.
Energy
195
,
116953
.
https://doi.org/10.1016/j.energy.2020.116953
.
Miller
G. A.
Farahani
H. J.
Hassell
R. L.
Khalilian
A.
Adelberg
J. W.
Wells
C. E.
(
2014
).
Field evaluation and performance of capacitance probes for automated drip irrigation of watermelons
.
Agricultural Water Management
131
,
124
134
.
https://doi.org/10.1016/j.agwat.2013.09.012
.
Mostafa
H.
Fujimoto
N.
(
2014
).
Water saving scenarios for effective irrigation management in Egyptian rice cultivation
.
Ecological Engineering
70
,
11
15
.
https://doi.org/10.1016/j.ecoleng.2014.04.005
.
Muttamara
S.
Sales
C.
(
1994
).
Water-quality management of the Chao-Phraya River (a case-study)
.
Environmental Technology
15
,
501
516
.
https://doi.org/10.1080/09593339409385457
.
Nazari
B.
Liaghat
A.
Akbari
M. R.
Keshavarz
M.
(
2018
).
Irrigation water management in Iran: implications for water use efficiency improvement
.
Agricultural Water Management
208
,
7
18
.
https://doi.org/10.1016/j.agwat.2018.06.003
.
Otero
A.
Goñi
C.
Castaño
J. P.
(
2012
).
Estimación de la evapotranspiración de referencia a partir de tanque «A» en el noroeste del Uruguay. (Reference evapotranspiration estimation from class «A» pan in the northwest of Uruguay)
.
Agrociencia Uruguay
16
,
142
149
.
Rahman
S.
Talukdar
S.
Kaul
A.
Biswas
M.
(
1981
).
Yield response of a semi-dwarf wheat variety to irrigation on a calcareous brown flood-plain soil of Bangladesh
.
Agricultural Water Management
3
,
217
225
.
https://doi.org/10.1016/0378-3774(81)90005-6
.
Rao
B. K.
Rajput
T. B. S.
(
2009
).
Decision support system for efficient water management in canal command areas
.
Current Science
97
,
90
98
.
Rosa
R.
Tanny
J.
(
2015
).
Surface renewal and eddy covariance measurements of sensible and latent heat fluxes of cotton during two growing seasons
.
Biosystems Engineering
136
,
149
161
.
https://doi.org/10.1016/j.biosystemseng.2015.05.012
.
Roth
G.
Harris
G.
Gillies
M.
Montgomery
J.
Wigginton
D.
(
2013
).
Water-use efficiency and productivity trends in Australian irrigated cotton: a review
.
Crop & Pasture Science
64
,
1033
1048
.
https://doi.org/10.1071/CP13315
.
Salmoral
G.
Willaarts
B. A.
Garrido
A.
Guse
B.
(
2017
).
Fostering integrated land and water management approaches: evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios
.
Land Use Policy
61
,
24
39
.
https://doi.org/10.1016/j.landusepol.2016.09.027
.
Sharma
B.
Rajput
A.
(
1990
).
Sustained rice productivity in eastern region of India through efficient water management-techniques
.
Indian Journal of Agronomy
35
,
85
90
.
Shaw
J. N.
Bosch
D. D.
West
L. T.
Truman
C. C.
Radcliffe
D. E.
(
2001
).
Lateral flow in loamy to sandy Kandiudults of the Upper coastal plain of Georgia (USA)
.
Geoderma
99
,
1
25
.
https://doi.org/10.1016/S0016-7061(00)00061-6
.
Stata
(
2019
).
Stata: Software for Statistics and Data Science [WWW Document]
.
Available at: https://www.stata.com/ (accessed 3 July 2019)
.
Suárez-Varela
M.
de los Ángeles García-Valiñas
M.
González-Gómez
F.
Picazo-Tadeo
A. J.
(
2017
).
Ownership and performance in water services revisited: does private management really outperform public?
Water Resources Management
31
,
2355
2373
.
https://doi.org/10.1007/s11269-016-1495-3
.
Torres-Reyna
O.
(
n.d.
).
Getting Started in Factor Analysis (Using Stata 10)(ver. 1.5) [WWW Document]
.
Available at: https://www.princeton.edu/∼otorres/Factor.pdf (accessed 3 July 2019)
.
Totin
E.
Stroosnijder
L.
Agbossou
E.
(
2013
).
Mulching upland rice for efficient water management: a collaborative approach in Benin
.
Agricultural Water Management
125
,
71
80
.
https://doi.org/10.1016/j.agwat.2013.04.012
.
van Steenbergen
F.
Basharat
M.
Lashari
B. K.
(
2015
).
Key challenges and opportunities for conjunctive management of surface and groundwater in mega-irrigation systems: lower Indus
.
Pakistan. Resources-Basel
4
,
831
856
.
https://doi.org/10.3390/resources4040831
.
Web of Science
(
2019
).
Web of Science – All Databases [WWW Document]
. ).
WFD
(
2000
).
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy
.
Official Journal of the European Communities
L327
(December) (2000)
.
Wijewardana
Y. G. N. S.
Galagedara
L. W.
(
2010
).
Estimation of spatio-temporal variability of soil water content in agricultural fields with ground penetrating radar
.
Journal of Hydrology
391
,
26
35
.
https://doi.org/10.1016/j.jhydrol.2010.06.036
.
Xiang
Z.
Chen
X.
Lian
Y.
(
2016
).
Quantifying the vulnerability of surface water environment in humid areas base on DEA method
.
Water Resources Management
30
,
5101
5112
.
https://doi.org/10.1007/s11269-016-1471-y
.
Yang
P.
Hu
H.
Tian
F.
Zhang
Z.
Dai
C.
(
2016
).
Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China
.
Agricultural Water Management
171
,
21
30
.
https://doi.org/10.1016/j.agwat.2016.03.007
.
Yuan
S.
Peng
S.
Wang
D.
Man
J.
(
2018
).
Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China
.
Energy
160
,
184
191
.
https://doi.org/10.1016/j.energy.2018.07.006
.
Zhang
L. J.
Yin
X. A.
Zhi
Y.
Yang
Z. F.
(
2014a
).
Determination of virtual water content of rice and spatial characteristics analysis in China
.
Hydrology and Earth System Sciences
18
,
2103
2111
.
https://doi.org/10.5194/hess-18-2103-2014
.
Zhang
Q.
Wang
S.
Li
L.
Inoue
M.
Xiang
J.
Qiu
G.
Jin
W.
(
2014b
).
Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines
.
Agricultural Water Management
143
,
1
8
.
https://doi.org/10.1016/j.agwat.2014.05.015
.