Assessing the aquatic chemistry of water bodies through sample collection is labor- and time-intensive with limits on discrete spatial coverage that may not provide a detailed representation of the system. A practical approach is to develop in situ sensors deployed aboard autonomous underwater vehicles (AUVs) for three-dimensional water chemistry mapping. For this purpose, a compact optical instrument (LEDIF) measuring fluorescence, absorbance, and scattering to quantify contaminants and natural substances in water bodies is packaged inside a pressure hull and attached to a highly modular and flexible AUV (Small Team of Autonomous Robotic FISH (STARFISH)). LEDIF-STARFISH was deployed at a reservoir in Singapore for in situ real-time chlorophyll a and turbidity data collection. Locations of potential algal hot spots were observed, providing unprecedented insight into the plankton biomass distribution of the reservoir at different times. The results showcase the instrument's potential in tracking spatiotemporal variability of substances in large water bodies.

You do not currently have access to this content.