This paper presents methodology, concept and results of the WateReuse Foundation project WFR – 09 – 06b when developing a high pressure membrane, reverse osmosis (RO) and nanofiltration (NF) online membrane integrity testing (MIT) technique. The use of pressure-driven membrane processes, particularly RO, has grown significantly over the past few decades in water treatment and reuse applications to safeguard water supplies against harmful pathogens and impurities. In principle, RO membranes should provide a complete physical barrier to the passage of nanosize pathogens (e.g., enteric viruses). However, in the presence of imperfections and/or membrane damage, membrane breaches as small as 20 to 30 nm can allow enteric viruses to pass through the membrane and contaminate the product water stream, thereby posing a potential health hazard that is of particular concern for potable water production. This project was focused on evaluating a pulsed-marker membrane integrity monitoring (PM-MIMo) approach for RO processes on the basis of the use of a fluorescent marker. The monitoring approach employs pulsed dosing (via a precision metering pump) of a marker into the RO feed stream coupled with online marker concentration monitoring in the RO permeate by an inline spectrofluorometer. Membrane integrity is then inferred on the basis of real-time analysis of the marker permeate time − profile concentration in response. The basic concept of the PM-MIMo approach for detecting membrane breaches was successfully demonstrated, by comparing intact and damaged membranes, in a series of experiments using a diagnostic plate-and-frame RO system and spiral-wound RO pilot system. Results of the developed technique are presented in the project report to allow the industry to consider adopting this technique for RO/NF online integrity monitoring.

You do not currently have access to this content.