Abstract

The aim of this paper was to evaluate the performance of two modified upflow anaerobic reactor (RAns) as a decentralized technology for the treatment of high-strength domestic wastewater. Two full-scale anaerobic reactors (Ran1 and Ran2) with the same configuration and total volume of 14.6 m³, total height of 2.57 m, and constructed from fibreglass reinforced plastics were operated with a 16-hour hydraulic retention time and submitted to a volumetric organic load less than 2.7 kg chemical oxygen demand (COD)·m−3·d−1. The RAns were monitored for 10 consecutive months and showed the capability to support the fluctuations of organic loading and volumetric rates. The compact anaerobic reactors proved to be effective in removing organic matter (biological oxygen demand removal efficiencies greater than 70% and the average soluble COD removal efficiencies greater than 57.4%). The solids profile in the reactor ranged from very dense particles with good settleability close to the bottom (sludge bed) to a more dispersed and light sludge close to the top of the reactor (sludge blanket), similar to conventional UASB reactors.

You do not currently have access to this content.