Abstract
The Guojiahe coalmine was studied to estimate the maximum water level in the fractured zone in the overburden of a thick seam in Linyou mining area, where extraction is fully-mechanized. Using a predictive model of the movement and deformation of the upper rock/soil layer in the overburden fracture zone, the free water level in the overburden was determined. Physical and numerical simulations were performed to study the development characteristics of water-flow in the fractured zone under different conditions, and the maximum water level in the fracture zone was determined. The maximum height of the fracture zone is 185 ∼ 193 m from the roof of the coal seam, and the relationship between it and the distance to the working face has a step-like function, revealing the controlling effects on water level of the key strata in the overburden.