Abstract

This study evaluated the performance of a novel high rate anaerobic bioreactor system for the treatment of poultry slaughterhouse wastewater (PSW). The new system consisted of a granule-based technology operated in a down-flow configuration, with the assistance of medium-sized pumice stones used as packing materials for the retention of the anaerobic granules, to avoid challenges associated with the use of the three-phase separator of up-flow systems and the washout of the anaerobic biomass. Furthermore, a recycling stream was applied to the system to improve the mixing inside the Down-flow Expanded Granular Bed Reactor (DEGBR), i.e. the influent distribution to the granular biomass, and the implementation of intermittent fluidization when required to alleviate the effects of pressure drop in such systems. The DEGBR was operated under mesophilic conditions (30–35 °C) and achieved total chemical oxygen demand (tCOD), five-day biological oxygen demand and total suspended solids average removal percentages >95%, and a fats, oils and grease average removal percentage of 93.67% ± 4.51, for an organic loading rate varying between 1.1 to 38.9 gCOD/L.day.

You do not currently have access to this content.