Membrane technology has emerged as a dominant solution to seawater desalination due to its superior advantages such as stable output water quality, lower energy consumption, ease of operation and smaller footprint. However, the design of spiral wound reverse osmosis (RO) membranes used in desalination does not allow for backwash or air scouring, thus rendering the RO membrane highly susceptible to fouling. Pretreatment for the RO system is therefore essential to ensure a long service life of the RO membranes. For waters containing suspended solids of up to 75 mg/L (such as that in the SingSpring Desalination Plant at Tuas, Singapore), conventional pretreatment methods (such as dissolved air floatation and filtration (DAFF), chemical dosing and cartridge filtration) require regular operator intervention to produce a permeate of reasonably quality. Ultrafiltration (UF) as a pretreatment for seawater desalination can offer better treated water, lower operating costs, a smaller footprint, and flexibility in dealing with poor or varying feed water quality. By improving the pretreatment permeate water quality, reducing operating costs and the footprint, capital expenses can be lowered. Greater stability is also achieved during times of poor or variable feed water conditions (such as periods of algalbloom). A pilot study was conducted at SingSpring to track the performance of Hyflux's Kristal® 2000 hollow fiber UF membranes as pretreatment for the seawater reverse osmosis (SWRO) system. The results of the pilot study will enable the design of future large-scale UF-SWRO membrane projects for seawater desalination.

You do not currently have access to this content.