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ABSTRACT

The current research aimed to fabricate a cost-effective activated carbon disc for bacteria and turbidity removal in contaminated

water using polyethersulfone membrane solution as a bonding agent. The mixing compatibility and bonding stability of the blend

activated carbon disc were studied with a bonding strength test. The morphology of activated carbon discs was studied by a

microscope. The activated carbon discs had a thick dense layer between the powder. Activated carbon discs significantly

removed the total coliforms populations (99%) when evaluated against river water whilst removal by the powder was only up

to 90%. The turbidity removal efficiency for the activated carbon increased from 29%-79% with the utilization of the membrane

as the bonding agent in forming the disc. However, the pH of water treated by the activated carbon powder and disc did not

change significantly, yet it laywithin the pH range of safe drinkingwater (6.5–7.7). It revealed the important role of PESmembranes

for the activated carbon discs to improve coliform and turbidity removal in the water, ensuring the quality of water resources.
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HIGHLIGHTS

• Activated carbon disc was fabricated by using polyethersulfone (PES) dope solution as a bonding agent.

• Fabricated activated carbon disc reduced water turbidity up to 79%.

• Activated carbon disc removed total coliform in the water up to 99%.
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1. INTRODUCTION

Freshwater is a fundamental resource for human well-being and living things; it is the most essential natural
resource in the world (Liu et al. 2015; Yimyam 2017). Limited access to clean water due to water pollution,

improper water treatment, poor distribution of water resources, and climate changes have become a major chal-
lenge in some countries (Pintilie et al. 2016; Khan et al. 2017). Many countries deal with the increasing demand
on fresh water supplies and struggle to tackle inadequate clean water resources. Water sources are now produced

in many ways to fulfill the increasing demand. For example, people collect water from ponds and rivers, but now
they can obtain water from unconventional sources, such as simple water treatment and water purification (Ang
et al. 2011; Lee et al. 2017). Currently, wastewater reclamation has received much attention as an alternative

source of freshwater for irrigation and industrial purposes (Diaz-Elsayed et al. 2020; Echevarría et al. 2020).
Different methods, such as adsorption (Aghababaei et al. 2021; Aragaw 2021) and membrane filtration (Davari

et al. 2021; Mahmoud & Kochameshki 2021) have been used for the water treatment process. In terms of adsorp-

tion, adsorbents for wastewater treatments are made of many materials, such as activated carbon (Belhamdi et al.
2020), hydroxyapatite (Hariyanto et al. 2020), polymers (Lou et al. 2021), zeolites (Konale et al. 2020), and clay
(Ntwampe 2020). Due to the large surface area, low fabrication cost, and materials in use, activated carbons com-
monly become adsorbents for removing pollutants in contaminated water (Vargas & Lopes 2020; Ashiqa et al.
2021; Mueanpun et al. 2021; Sidiqua & Priya 2021). Besides, the main resources to produce activated carbon
are from agricultural and industrial waste, which is widely available (Udaiyappan et al. 2017; Lakshmi et al.
2018). An activated carbon has also been combined with ultrafiltration in removing antibiotics, beta-blockers,

psychiatric drugs, and steroid micropollutants (Sbardella et al. 2018; Tagliavini & Schäfer 2018).
For ultrafiltration, polyethersulfone (PES) membrane is considered as the core polymer material infiltration

because of its good mechanical strength, chemical resistance, and thermal stability (To et al. 2015; Madaeni

et al. 2015; Abdel-Aty et al. 2020; Yonita et al. 2020).
The powder and granular activated carbon, known as a low-cost adsorbent, has become a water filter (Balaji

et al. 2020; Mukherjee & Bandyopadhyaya 2021). However, the contaminants in the water still can pass through

in between activated carbon powder or granules, resulting in low filtration and adsorption efficiency. Commercial
disc and hemispherical activated carbon have better water filtration performance. Researchers used a pitch foam-
ing process to prepare high surface-area activated carbon discs (Gao et al. 2017a, 2017b). However, foaming
processes carried out at a high pressure promote an additional complexity, for example, cost and risk for labora-

tory or even industrial scale.
This current study proposed an approach of using a low-cost dope solution as a bonding agent to produce an

activated carbon disc. This method could reduce the use of advanced equipment and energy required to fabricate

activated carbon discs at a high pressure and temperature. Polymer solution as the bonding agent may serve as a
matrix in powder composites to improve the mechanical strength of the discs and provide additional filtration
alongside the surface area of the activated carbon particles.

Activated carbon powder was selected as filler particles because they were relatively inexpensive compared to
carbon nanotubes or graphite. As a matrix producing activated carbon discs, a polyethersulfone membrane sol-
ution was selected. The different composition ratios of PES solution (30 wt.% and 50 wt.%) to produce an
activated carbon disc were investigated along with the ratios of activated carbon powder. A filtration test was con-

ducted to find the activated carbon disc efficacy; that is, its capability for removing bacteria and turbidity from the
water sample and its bonding strength.

2. MATERIALS AND METHODS

2.1. Fabrication of activated carbon discs

Commercial activated carbon powder was used as a filler, and polyethersulfone (Sumitomo Chemical Co., Ltd,

Japan) was used as a polymer in dope solution. Polyvinylpyrrolidone (PVP) and 1-methyl-2-pyrrolidone (NMP)
were purchased from Merck KGaA, Darmstadt, Germany. The preparation of the PES dope solution was per-
formed similarly to what the researchers have studied (Prihandana et al. 2014). PES (20 wt.%) and PVP

(20 wt.%) were dissolved in NMP at 80 °C. The dope solution was then added to the activated carbon powder
at different weight ratios in percentages (30 wt.% and 50 wt.%) and properly mixed until a homogeneous
blend was formed. The discs (40-mm diameter) were formed in a hydraulic mold, pressed, and dried in an

oven at 100 °C for one hour. After the drying process, the discs were then weighed, and their thickness was
aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf
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measured (see Figure 1). The surface morphology of the fabricated discs was then observed using a digital
microscope.
Figure 1 | Preparation of activated carbon discs.
2.2. Surface morphology of the activated carbon discs

Surface morphology analysis was conducted by using Dino-Lite Microscope DINO AM3103. This analysis pro-

vides visual information on the surface morphology of the discs, the activated carbon powder, and the dense layer
formed by PES solution amongst the fine grains.

2.3. Bonding strength test

A bonding strength test was conducted to measure the strength of the dense layer in preventing the discs from

crumbling by immersing the discs into the water for 48 hours. After immersion, the discs were dried in the
oven at 100° C until the water was removed. In the real application, the discs should have had a direct contact
with water during the filtration process. Thus, measuring the bonding strength is necessary when the disc is
immersed in the water. The bonding strength of the dense layer was calculated according to the wear formula

and particle loss during the immersion test (Zodrow et al. 2009; Chowdhury et al. 2021).

WLR (%) ¼ Wa �Wb

Wa
� 100% (1)

Wa is the weight of the activated carbon disc before the water immersion test, Wb is the weight of the activated
carbon disc after the water immersion test and WLR is the weight loss ratio of the activated carbon disc.

2.4. Filtration test

The disc was placed at the base of the filtration cell to be tested for its permeation under gravity force. Figure 2
presents the experimental set up for water filtration. A non-woven fabric was placed at the bottom of the filtration
cell. Should any carbon powder have detached from the AC disc, the non-woven fabric would prevent the powder

from being washed away by the water flow during the filtration process. The filtration cell was filled with the
sample water taken from a river in the Special Region of Yogyakarta, Indonesia. The permeation of the
sample water through the disc was then analysed for bacterial removal, pH, and turbidity (U.S. Environmental
Protection Agency 1973; APHA/AWWA/WEF 2012).
aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf



Figure 2 | Filtration test on activated carbon discs and morphology of non-woven fabric.
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2.4.1. Total coliform test

A coliform test was conducted for microbiological examinations of water samples to determine the quality of the
filtrated water. The coliform group of bacteria is the main indication of the suitability of water for domestic use
and others. The presence of coliform bacteria causes water to be potentially unsafe for consumption or use. In

this study, the multiple-tube fermentation (MTF) method was performed to examine the presence of coliform
in the water sample (APHA/AWWA/WEF 2012).

2.4.2. pH test

Feed water was collected from a river in Yogyakarta, Indonesia. This river stream has a natural surface water inlet
and outlet. The pH of the collected water was found to be 6.5. According to Zhang et al. (2021), this pH value is

still safe for consumption.

2.4.3. Turbidity test

Water turbidity, as one of the basic parameters in the water quality analysis, was measured using a turbidity
meter. Turbidity represents the existence of suspended and dissolved solids in the water (Khiari et al. 2020). How-
ever, turbidity does not always interpret as a direct risk to public health; the suspended solids responsible for
turbidity can be a carrier to heavy metals and microbial pathogens in the water (Bilotta & Brazier 2008).

2.4.4. Fe filtration test

A Fe separation test was conducted using Ferrous Chloride Tetra Hydrate (FeCl2.4H2O) to make Fe ions

solutions. The feed solution with the individual metal of Fe was provided at an initial concentration of 10 mg
Fe/l (Kasim et al. 2017). The concentration of Fe in the water was measured using a pack test ion-selective kit
from Kyoritsu Chemical-Check Lab. Corp., Japan.
3. RESULTS AND DISCUSSION

3.1. Surface morphology of fabricated activated carbon discs

Figure 3 shows the appearances of the fabricated activated carbon disc surface with different ratios of PES

solution. Activated carbon blend polymers were fabricated using a dry phase inversion method known as precipi-
tation by solvent evaporation. In this method, the solvent in the dope solution is allowed to evaporate in the
atmosphere to free the water vapour, allowing a dense, homogeneous membrane to be formed (Mulder 1996),

since the bigger the demixing gap is, the easier it is to form a denser membrane structure (Han et al. 2010). In
Figure 3, the activated carbon disc, which was made of 50% PES solution, has more coverage of PES dense
layer attached in the disc surface and structure compared to the AC-Disc 30. This result was due to the higher

volume of PES solution generating more binder utilized in fabricating AC-Disc 50.
Table 1 presents the weighted activated carbon discs before and after the bonding strength test. Activated

carbon discs delivered a low weight loss ratio after the bonding strength test and remained intact. The bond cre-
ated by the PES dope solution successfully secured the powder from collapsing.
aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf



Table 1 | Weight loss ratios of the activated carbon discs after the immersion test

No AC types

Disc weight (grams)

Weight loss ratio (%)Before After

1 AC-30%PES (AC Disc 30) 25.7 22.4 12.8

2 AC-50%PES (AC Disc 50) 29.3 24.4 16.5

Figure 3 | Activated carbon discs; (a) 30% of PES solution, (b) 50% of PES solution.
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In addition to the bonding test, a filtration test was performed for 10 minutes under gravity force. A non-woven

mesh was used to prevent the detached carbon grains plunged into the permeate chamber during the filtration
test, as shown in Figure 2. Experiment results showed that the flow rate of the AC-powder, AC-disc 30, and
AC disc 50 within 10 minutes were less than 1 ml, 5 ml, and 20 ml, respectively. The no-binder AC powder

gave the lowest flow rate because some carbon powder blocked the pores of the non-woven fabric. The AC-30
had a lower flow rate because the PES solution could not bind the carbon grains as tightly as that in AC-50.
This resulted in some powders detaching from the disc, and filled the pores of the non-woven fabric that acted

as separator in the water filtration experimental set-up. Due to this random blockage, the flow rate given is
lower. This is in accordance with the flow rate of no-binder AC powder, which gave the lowest flow rate since
the fabric pores were mostly blocked by the AC powder. On the other hand, the AC-Disc 50 provided the highest

flow rate compared to the AC-Disc 30. This was due to the membrane being able to bind the powder properly,
thus preventing it from blocking the non-woven pore.

3.2. Filtered-river water using an activated carbon disc

Biological and physical parameters were used in analysing river water filtration. The amount of total coliform was
used as a biological parameter, whilst turbidity and pH were analysed as physical parameters.

3.3. Rejection of total coliform

Table 2 presents the amount of the total coliform before and after the filtration test. The number of total coliforms
in the river water was 24� 106 MPN/ml. Detected in the filtrated water, it significantly decreased by the appli-
cation of the filter.
Table 2 | The detected number of total coliforms before and after filtration test

Amount of bacteria (MPN/ml)

River AC-powder AC Disc 30 AC Disc 50

Total coliforms 24� 106 24� 104 1,400 5,400
Figure 4 summarizes the result of the coliform removal by different types of filters presented in percentage. The

filtration efficiency of filters was measured for coliform population. The activated carbon powder removed 90% of
coliforms from the river water due to its pore size, where it is too small for bacteria (1–2 μm� 0.5 μm) to enter
(Walker & Weatherley 1998; Lu et al. 2020). According to Wang et al. (1995) the pore-size range for activated
aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf



Figure 4 | Removal of total coliforms in the river water.
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carbon particles is thought to be 2–5 μm, where it guarantees sufficient high adsorption capacity while allowing for

bacterial adhesion on the surfaces. However, the activated carbon disc had better performance than the activated
carbon powder in removing the total coliforms up to 99%. Larger spaces between adjacent powder might have
obstructed the sorption of the contaminants from the water. Similar to these findings, Wegelin (1996) and Ni’ma-
tuzahroh et al. (2020) asserted that a roughing filtration process by powder filter is not optimal in reducing the

number of total coliform in the contaminated water. Furthermore, the PES membrane solution connected activated
carbon fine grains and combined them into one compound for significant reduction. The formed PES membrane,
which is attached to the surface of the activated carbon powder, created a smaller filter pore (see Figure 5). Princi-

pally, the coliforms attached to the water impurities; when the impurities are not allowed to go through the filter,
the coliforms population that passes through the filter was reduced (Tripathi et al. 2019).
Figure 5 | Mechanism of blended PES membrane-activated carbon in removing coliforms.
According to Kanagaraj et al. (2015) and Sarbolouki (1982), the solute rejection (in this case bacteria rejection)

above 80% can used to determine the average pore size. Thus, the average pore size of the activated carbon disc
can be determined by using the following equation:

�R ¼ 100
/

%SR

� �
(2)

where �R is the average pore size (radius),/ is the radius of the bacteria (0.5 μm) in the water sample and SR is the

bacteria rejection.
aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf
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Based on the reference and experimental result, the radius of the bacteria is 0.25 μm (Walker & Weatherley
1998) and the rejection of bacteria is 99%, therefore the average pore size (radius) of the AC-Disc is 0.25 μm.

3.4. pH test

Table 3 presents the results of the filtrated water in terms of pH value. The pH value of the river water was 6.5.
After the filtration process using the activated carbon powder, the pH value changed to 7.3. The changes in pH
values in the filtrated water by activated carbon and AC-30 was caused by an ion exchange phenomenon, where

the surface of carbon sorbs the anions and corresponding hydronium ions from the water, resulting in pH
increase. (Farmer et al. 1996). In the case of pH filtrated water by AC-50, it seems that the higher amount of
PES membrane on the disc reduced the effect of increasing pH caused by activated carbon powder. The pH

values for the filtrated water using the activated carbon discs were in the safe limit range of 6.5–7.7, in which
most drinking water has the pH range of 6.5–8.5 (APHA/AWWA/WEF 2012; Zhang et al. 2021).
Table 3 | pH of the tested water

Parameters

Results

River water AC-powder AC Disc 30 AC Disc 50

6.5 7.3 7.7 6.5
3.5. Turbidity test

Table 4 presents the results of the turbidity test on the filtrated water. The turbidity of the river water was at 14
NTU, and it was reduced to 10 NTU after the filtration using the activated carbon powder. The reduction likely

occurred by the influence of sorption capacity and a high surface area of the activated carbon powder. Being fil-
trated with the activated carbon disc (AC Disc 50), the turbidity of river water was measured at 3 NTU. The result
indicated that the introduction of the PES membrane into activated carbon contributed a significant effect on

NTU reduction of up to 79%, compared to the individual effect of the activated carbon (Dialynas & Diamado-
poulos 2008; Vargas & Lopes 2020). Moreover, these variations in turbidity filtration are related to different
pore dimensions of discs and powder (Someya et al. 2021), as well as the free space between powder, allowing
particulate matter to pass through the filters (Suzuki et al. 2020).
Table 4 | Turbidity of the tested water

Parameter

Results (NTU)

River AC-powder AC Disc 30 AC Disc 50

Turbidity 14 10 5 3
3.6. Fe separation test

The results of the Fe concentration before and after the filtration process are explained in Table 5. The
AC-powder removed the Fe ions in the water sample by up to 50% due to its suitable surface functional

groups and appropriate pore diameter (Mariana et al. 2021). However, some Fe ions were still detected during
the permeation since there were spaces between the powder. On the other hand, the AC Disc 50 gave the
lowest Fe concentration because of the PES membrane. Such PES membrane can perform the adsorption mech-

anism which is associated with functional groups to remove the metal ions (Khulbe & Matsuura 2018).
Table 5 | Fe concentration of the water sample

Parameter

Results (mg/L)

Feed (water sample) AC-powder AC Disc 30 AC Disc 50

Fe concentration 10 5 1 0.5

aponline.com/wpt/article-pdf/17/1/102/989402/wpt0170102.pdf
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4. CONCLUSIONS

A low-cost innovative method using the PES membrane-embedded activated carbon powder successfully increases
the selectivity of the carbon powder. The visual analysis verifies that the PES solution forms a dense layer to fill in

spaces of the fine powder, thereby making the mixture one solid compound. The embedded PES membranes in the
fine powder removed the total coliforms in the selected river water up to 99%. The membrane in the activated
carbon disc reduced the turbidity of the river water by up to 79%. In conclusion, the activated carbon powder

embedded in the PES membrane is a low-cost yet promising filter for water filtration treatment.
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