The work aims to investigate the Water Quality Index (WQI) of the Shatt-al-Hilla River, a branch of the Euphrates river in Babel city, Iraq. Twelve important and influential parameters were taken into account to evaluate the WQI, namely the temperature of water (Temp), total hardness (TH), electrical conductivity (EC), acidity (PH), total dissolved solids (TDS), sulfate (So4−2), calcium (Ca+2), magnesium (Mg+2), sodium (Na+1), biological oxygen demand (BOD), potassium (K) and turbidity. Raw and treated water quality was evaluated using two models, Weighted Calculation and Canadian Cabinet for the Environmental Water Quality Index (CCME WQI). The study area included three water treatment plants, namely New Hilla (NH), Al-Hussein (HE), and Al- Hashimyah (HA), which discharge their treated water into the Shatt-al-Hilla river. Raw and treated water samples were collected and tested regularly for nine months, from October 2020 to June 2021. The results showed all chemical and physical parameters (for both raw and treated water) met the Iraqi standards except Ca+2, turbidity and EC for raw water and temperature for treated water.

  • This paper studied Water Quality Index for the Shatt-al-Hilla River in Babel city, Iraq.

  • Twelve parameters were considered in this study.

  • Three Water Treatment Plants were included in this study.

  • All parameters were within the Iraqi standards, except the Ca, Turbidity and EC.

Water is one of the most indispensable resources; hence life is not possible on this planet without water (Abdulla et al. 2020; Salah et al. 2020a). Water quality is defined in terms of its physical, chemical and biological parameters, and evaluating these parameters is important before use for any intended purposes, such as potable, agricultural, recreational and industrial water usage, and so on (Alobaidy et al. 2010). Drinking water in Iraq is secured from rivers, lakes, wells and springs, which are usually exposed to various pollutants that result from the diffusion from non-point and point sources (Hashim et al. 2021a; Omran et al. 2021), which are difficult to control, monitor, and evaluate, such as sewage (Hashim et al. 2020a; Zanki et al. 2020), agricultural and industrial effluents (Emamjomeh et al. 2020a, 2020b). In addition, global warming plays a serious role in the freshwater shortage in Iraq (Zubaidi et al. 2020a; Zubaidi Salah et al. 2020), where the last studies revealed a significant shortage in precipitations (Salah et al. 2020b, 2020c). Furthermore, the rapid increase in urbanization (Al-Jumeily et al. 2019; Alnaimi et al. 2020; Farhan et al. 2021) and industrial activities, such as petroleum and cement industries (Grmasha et al. 2020; Al-Sareji et al. 2021; Obaid et al. 2021) near the sources of freshwater in Iraq, have intensified the problem.

Therefore, the need for water treatment technologies and water monitoring policies becomes more urgent than any time before (Al-Hashimi et al. 2021; Hashim et al. 2021b). In this context, many methods were used to remediate water from a certain pollutant of a set of pollutants, such as filtration (Abdulraheem et al. 2020; Alhendal et al. 2020; Alyafei et al. 2020), electrocoagulation (Aqeel et al. 2020; Hashim et al. 2020b), ultrasonic-based methods (Al-Marri et al. 2020), and adsorbents (Alenazi et al. 2020a, 2020b). For example, Hashim et al. (2020c) used a combined treatment method that utilises both electrocoagulation and ultrasonic techniques to remediate water from biological pollutants, and the results obtained proved this combined method can remove all pathogens within 15 minutes at relatively cost. Additionally, Abdulhadi et al. (2021) used the electrocoagulation method to remove complex pollutants from water, and the results indicated this method removed 99% of iron and organic pollutants from water. Additionally, forcasting methods were used to predict the possible changes in the abundancy of freshwater, such as those studies of Zubaidi et al. (2020b) and Al-Saati et al. (2021).

Other studies focused on the evaluation of water quality. One of the most effective ways to communicate information on water quality trends is using suitable indices (Al-Mansori 2017).

The current study aims at evaluating the water quality of Shatt-al-Hilla River in Babel city, Iraq, which is the only source of freshwater in Babylon governorate, which is home for about 2 million people. In this research, the water quality index was calculated for raw and treated water at three sites, namely New Hilla (NH), Al-Hussein (HU), and Al- Hashimyah (HA). The study was conducted from October 2020 to June 2021. The analysis was conducted using a mathematical method and the Canadian method, and the results were analyzed statistically using the SPSS software.

Description of the study area

Shatt Al-Hilla is one of Iraq's famous rivers in Hilla city as well as its largest source of water, which extends to 101 km2. The main source of the river is the Euphrates River, where the river comes from the north boundary of the province of Babylon until it reaches Al-Diwaniya province. Euphrates River is one of Iraq's main irrigation systems, particularly in its mid location. After passing the Al-Hindiya barrage, Shatt Al-Hilla flows out of the river of Euphrates (Salman et al. 2013). Shatt Al-Hilla is used for drinking and agriculture. It is considered a significant attraction, but has been exposed to negligence in recent years. Salinity slowly rising along the river was exacerbating the situation (Saod et al. 2019). The study area included three stations along the Hilla River, which extended from the city of Hilla to the town of Al-Hashimyah within the governorate of Babylon. These plants represent water treatment New Hilla (NH), Al-Hussein(HU), and Al- Hashimyah(HA). Latitude and longitude for each station are listed in Table 1. Geographical location of the study area is shown in Figure 1.

Table 1

Latitude and longitude of stations

StationLatitudeLongitude
New Hilla 32°30′54″ 44°24′43″ 
Al-Hussein 32°23'32″ 44°32'11″ 
Al- Hashimyah 32°22'24″ 44°39'87″ 
StationLatitudeLongitude
New Hilla 32°30′54″ 44°24′43″ 
Al-Hussein 32°23'32″ 44°32'11″ 
Al- Hashimyah 32°22'24″ 44°39'87″ 
Table 2

Standard specifications for raw water and drinking water according to the Iraqi standards

ParameterMaximum limits (raw water)Maximum limits (treated water)
Temperature 30 °C 25 °C 
pH 6.5–8.5 6.5–8.5 
Total hardness (TH) 500 500 
Calcium (Ca+250 150 
Magnesium (Mg+250 100 
Sulfate (SO4−2400 400 
Sodium (Na+200 300 
Electrical conductivity (EC) 1,000 2,000 
Potassium (K+12 10 
Total dissolved solids (TDS) 1,500 1,000 
Turbidity 
BOD – 
ParameterMaximum limits (raw water)Maximum limits (treated water)
Temperature 30 °C 25 °C 
pH 6.5–8.5 6.5–8.5 
Total hardness (TH) 500 500 
Calcium (Ca+250 150 
Magnesium (Mg+250 100 
Sulfate (SO4−2400 400 
Sodium (Na+200 300 
Electrical conductivity (EC) 1,000 2,000 
Potassium (K+12 10 
Total dissolved solids (TDS) 1,500 1,000 
Turbidity 
BOD – 
Figure 1

Location of samples in Shatt Al-Hilla River (Department of Water Resources in Babylon, Iraq).

Figure 1

Location of samples in Shatt Al-Hilla River (Department of Water Resources in Babylon, Iraq).

Close modal

Samples collection and preservation

Water samples were collected from Shatt Al-Hilla river within Hilla City for (raw and treated) water for three different stations (New Hilla, Al-Hussein and Al-Hashimyah) to study the physical and chemical parameters and compare them with the Iraqi standard specifications Table 2. The water quality index was determined by using two models, which were the Weighted Arithmetic and Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI). Water samples were collected monthly from (October 2020 to June 2021), where twelve parameters of raw and treated water were examined, included temperature (Temp), Total hardness (TH), electrical conductivity (EC), acidity (PH), total dissolved solids (TDS), sulfate (So4−2), calcium (Ca+2), Magnesium (Mg+2), Sodium (Na+1), Biological demand for oxygen (BOD), Potassium (K) and turbidity, then calculating the efficiency of the project based on the mathematical method. Then, the results were analyzed graphically using a statistical analysis program (SPSS).

Required chemical parameters were analyzed immediately after sample collection, according to Table 3.

Table 3

Procedures used for detection of studied parameters

No.Parameter(APHA 2005)Brand and model of the instrument
pH pH meter HANNA modal HI98107 
EC Portable multi meter HACH 2100H JUMBO PPM 
Ca+2,Mg+2 & total hardness Titration with Na2EDTA – 
Sodium Flame photometer JENWAY, PFP 7 
Sulphate Calorimetry – 
Turbidity Turbidity meter Model AN HACH 2100N 
No.Parameter(APHA 2005)Brand and model of the instrument
pH pH meter HANNA modal HI98107 
EC Portable multi meter HACH 2100H JUMBO PPM 
Ca+2,Mg+2 & total hardness Titration with Na2EDTA – 
Sodium Flame photometer JENWAY, PFP 7 
Sulphate Calorimetry – 
Turbidity Turbidity meter Model AN HACH 2100N 

WQI calculations

Weighted arithmetic index method

This method transforms vast quantities of quality knowledge of water to a single water level quality number. WQI was used as a guideline for the classification of surface water depending on the use of basic parameters of water characterization (Şener et al. 2017).

To accurately depict water quality, the WQI system ideally contains a wide range of water quality criteria, which requires cost and time to calculate. The WQI approach, considered one of the most powerful ways to convey knowledge about water quality patterns to the common person and quality of water control policymakers, has been commonly used in aquatic environments in recent years (Ponsadailakshmi et al. 2018). The WQI can be used to highlight water pollutants, both inorganic and organic pollutants, for an effective water quality treatment.

The Water Quality Index (WQI) can be evaluated using the weighted arithmetic strategy that details the water body quality assessment (Călmuc et al. 2018). Classification of the computed WQI values shows in Table 4. The equation is:
(1)
Where:
  • qi: is a relative value of water quality

  • i: is a number of parameters that are taken into account

  • Wi: is a factor that calculates parameter significance and qi is evaluated by:
    (2)
    where:
  • Vi: is the experimental value of each parameter.

  • V0: is an ideal value of the parameter means that pH and dissolved oxygen 7.0 and 14.6 mg/L respectively and 0 for all other parameters (Călmuc et al. 2018).

  • Si: is a standard permissible value of water in which an analyzed sample of water was included.

  • Wi: is a factor evaluated by:
    (3)
  • where:

  • K is a constant, and evaluated by:
    (4)
Table 4

Classification of water quality according to weighted arithmetic index (Singh 2010)

WQI valueWater quality
0–25 Excellent 
26–50 Good water 
51–75 Moderately polluted 
76–100 Severely polluted 
>100 Unfit and unsuitable for drinking 
WQI valueWater quality
0–25 Excellent 
26–50 Good water 
51–75 Moderately polluted 
76–100 Severely polluted 
>100 Unfit and unsuitable for drinking 
The mean efficiency (E%) was calculated by using the equation below (Zaid Abed Al-Ridah 2020):
(5)

CCME WQI method

The (CCME WQI) index was described by the Canadian Council of Ministers of the Environment Water Quality (Hurley et al. 2012; Ranjbar et al. 2016). The index scores are computed as:
(6)
where, the index includes three components: F1 (scope) represents the variables number not compliant with water quality limits:
(7)
F2: represents the number of times these limits are not compliant:
(8)

F3: represents the quantity by which failed tested values are not compliant with their objectives (limits), which is calculated as follows:

  • (i)
    The excursion calculated from Equation (9) when the test value must not be greater than the objective
    (9)
    or from Equation (10), where the test value is not less than the objective
    (10)
  • (ii)
    The normalized sum of excursions (nse) represents the collective quantity by which single tests that are out of agreement are computed by summing the single-test excursions from their objectives and dividing by the number of the total test (all tests), is computed as:
    (11)
  • (iii)
    F3 can be calculated as:
    (12)

After the CCME WQI value was calculated, water quality was classified by linking it to the classes listed in Table 5.

Table 5

The corresponding values of water quality in conformity with the CCME-WQI index (Lumb et al. 2006) and (Mahagamage & Manage 2014)

CCME-WQI-valueWater quality
Excellent 95–100 
Good 80–94 
Fair 65–79 
Marginal 45–64 
Poor 0–44 
CCME-WQI-valueWater quality
Excellent 95–100 
Good 80–94 
Fair 65–79 
Marginal 45–64 
Poor 0–44 

It can be noted from Tables 611 that all the estimated values of the chemical and physical parameters of the studied water treatment plants are within the Iraqi specifications except for calcium, turbidity, electrical conductivity of raw water, and temperature of treated water.

VARIATION OF WATER QUALITY INDEX

According to Iraqi water quality standard limits and using the prior equations, the monthly raw and treated WQI was calculated below.

Table 6

Laboratory chemical and physical indicators for raw water for New Hilla project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.466 28.833 13.933 1,044.666 406.333 116.333 28.333 307.000 690.666 73.666 2.900 0.25 
11 7.533 22.366 9.666 980.333 354.000 84.333 34.666 258.333 600.000 67.000 3.933 0.27 
12 7.350 16.200 10.933 914.333 351.666 75.333 39.666 207.333 543.333 72.666 4.166 0.3 
7.340 17.633 9.333 917.333 316.000 67.333 37.000 213.000 547.333 70.000 3.333 0.87 
7.700 19.067 8.867 919.000 314.667 66.667 35.000 220.000 551.000 70.667 3.167 0.3 
7.767 18.533 9.167 918.333 321.333 67.333 34.667 221.667 551.000 70.667 3.100 0.303 
7.633 21.666 9.167 917.333 311.666 59.333 32.000 212.333 526.333 68.666 3.200 0.31 
7.600 24.333 9.166 911.666 303.666 60.000 31.333 209.333 523.666 64.666 3.066 0.303 
7.666 25.500 11.166 898.000 292.666 58.000 29.666 200.333 508.000 57.666 2.933 0.296 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.466 28.833 13.933 1,044.666 406.333 116.333 28.333 307.000 690.666 73.666 2.900 0.25 
11 7.533 22.366 9.666 980.333 354.000 84.333 34.666 258.333 600.000 67.000 3.933 0.27 
12 7.350 16.200 10.933 914.333 351.666 75.333 39.666 207.333 543.333 72.666 4.166 0.3 
7.340 17.633 9.333 917.333 316.000 67.333 37.000 213.000 547.333 70.000 3.333 0.87 
7.700 19.067 8.867 919.000 314.667 66.667 35.000 220.000 551.000 70.667 3.167 0.3 
7.767 18.533 9.167 918.333 321.333 67.333 34.667 221.667 551.000 70.667 3.100 0.303 
7.633 21.666 9.167 917.333 311.666 59.333 32.000 212.333 526.333 68.666 3.200 0.31 
7.600 24.333 9.166 911.666 303.666 60.000 31.333 209.333 523.666 64.666 3.066 0.303 
7.666 25.500 11.166 898.000 292.666 58.000 29.666 200.333 508.000 57.666 2.933 0.296 
Table 7

Laboratory chemical and physical indicators for treated water for New Hilla project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.433 28.933 1.633 1,039.000 396.666 113.333 27.666 307.000 678.666 73.333 2.866 
11 7.466 22.766 1.633 986.000 353.666 82.333 35.666 257.333 602.666 65.333 3.833 
12 7.266 16.933 0.500 913.666 346.666 75.333 37.000 200.666 544.666 72.666 4.166 
7.350 17.666 0.433 919.666 311.666 65.666 36.333 205.333 546.666 69.333 3.366 
7.610 19.500 0.467 919.000 315.000 65.667 35.333 216.333 550.000 71.667 3.267 
7.743 19.067 0.500 919.667 319.333 66.667 34.667 220.000 551.667 71.333 3.167 
7.633 22.333 0.533 918.333 313.000 61.000 31.333 211.666 528.000 70.000 3.266 
7.666 25.000 0.600 914.000 304.666 61.000 31.000 207.666 527.000 66.333 3.166 
7.600 25.000 0.300 901.333 294.333 59.333 31.000 200.333 506.666 59.000 3.000 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.433 28.933 1.633 1,039.000 396.666 113.333 27.666 307.000 678.666 73.333 2.866 
11 7.466 22.766 1.633 986.000 353.666 82.333 35.666 257.333 602.666 65.333 3.833 
12 7.266 16.933 0.500 913.666 346.666 75.333 37.000 200.666 544.666 72.666 4.166 
7.350 17.666 0.433 919.666 311.666 65.666 36.333 205.333 546.666 69.333 3.366 
7.610 19.500 0.467 919.000 315.000 65.667 35.333 216.333 550.000 71.667 3.267 
7.743 19.067 0.500 919.667 319.333 66.667 34.667 220.000 551.667 71.333 3.167 
7.633 22.333 0.533 918.333 313.000 61.000 31.333 211.666 528.000 70.000 3.266 
7.666 25.000 0.600 914.000 304.666 61.000 31.000 207.666 527.000 66.333 3.166 
7.600 25.000 0.300 901.333 294.333 59.333 31.000 200.333 506.666 59.000 3.000 
Table 8

Laboratory chemical and physical indicators for raw water for Al-Hussien project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.366 29.433 18.600 1,035.666 399.666 115.333 27.000 310.000 682.000 76.333 3.033 0.316 
11 7.266 24.700 15.133 972.000 325.333 80.333 30.000 233.000 575.666 77.000 3.033 0.326 
12 7.666 17.400 10.333 926.666 340.000 74.666 37.000 220.666 580.666 76.000 4.066 0.313 
7.733 19.066 11.670 926.333 321.666 68.000 37.000 207.666 554.666 55.333 4.000 0.303 
7.600 23.067 10.600 1,034.667 335.333 71.000 37.667 229.333 556.000 83.667 3.933 0.303 
7.533 20.667 11.000 1,034.333 335.667 70.333 38.000 230.000 556.667 84.333 4.000 0.29 
7.600 22.333 10.666 1,031.333 324.000 67.000 37.666 220.333 548.000 79.333 3.900 0.296 
7.600 23.666 11.000 1,014.000 316.000 65.000 34.666 210.000 539.333 75.333 3.766 0.296 
7.833 28.666 12.666 975.000 312.000 69.000 32.666 198.000 521.000 69.000 3.900 0.32 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.366 29.433 18.600 1,035.666 399.666 115.333 27.000 310.000 682.000 76.333 3.033 0.316 
11 7.266 24.700 15.133 972.000 325.333 80.333 30.000 233.000 575.666 77.000 3.033 0.326 
12 7.666 17.400 10.333 926.666 340.000 74.666 37.000 220.666 580.666 76.000 4.066 0.313 
7.733 19.066 11.670 926.333 321.666 68.000 37.000 207.666 554.666 55.333 4.000 0.303 
7.600 23.067 10.600 1,034.667 335.333 71.000 37.667 229.333 556.000 83.667 3.933 0.303 
7.533 20.667 11.000 1,034.333 335.667 70.333 38.000 230.000 556.667 84.333 4.000 0.29 
7.600 22.333 10.666 1,031.333 324.000 67.000 37.666 220.333 548.000 79.333 3.900 0.296 
7.600 23.666 11.000 1,014.000 316.000 65.000 34.666 210.000 539.333 75.333 3.766 0.296 
7.833 28.666 12.666 975.000 312.000 69.000 32.666 198.000 521.000 69.000 3.900 0.32 
Table 9

Laboratory chemical and physical indicators for treated water for Al-Hussien project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.466 29.033 4.133 1,072.333 410.333 117.333 26.666 304.666 705.000 81.666 3.100 
11 7.433 24.400 3.500 969.666 339.666 81.000 32.000 230.000 574.666 78.000 3.166 
12 7.500 17.500 3.333 931.333 342.000 74.666 37.666 215.666 584.000 76.333 4.133 
7.666 18.900 1.266 952.333 324.666 70.666 38.666 211.000 582.666 63.333 4.133 
7.500 22.833 2.433 1,044.333 342.333 71.000 40.000 232.000 583.667 85.333 4.000 
7.400 19.833 1.833 1,041.333 340.000 70.667 39.333 232.333 583.000 86.000 4.100 
7.500 21.000 1.733 1,037.666 330.333 68.666 39.000 222.000 562.333 81.333 3.900 
7.600 21.666 1.466 1,020.666 321.000 66.666 36.000 212.333 552.000 76.333 3.833 
7.733 28.333 1.333 1,011.000 316.666 70.333 33.666 202.000 526.000 71.666 3.633 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.466 29.033 4.133 1,072.333 410.333 117.333 26.666 304.666 705.000 81.666 3.100 
11 7.433 24.400 3.500 969.666 339.666 81.000 32.000 230.000 574.666 78.000 3.166 
12 7.500 17.500 3.333 931.333 342.000 74.666 37.666 215.666 584.000 76.333 4.133 
7.666 18.900 1.266 952.333 324.666 70.666 38.666 211.000 582.666 63.333 4.133 
7.500 22.833 2.433 1,044.333 342.333 71.000 40.000 232.000 583.667 85.333 4.000 
7.400 19.833 1.833 1,041.333 340.000 70.667 39.333 232.333 583.000 86.000 4.100 
7.500 21.000 1.733 1,037.666 330.333 68.666 39.000 222.000 562.333 81.333 3.900 
7.600 21.666 1.466 1,020.666 321.000 66.666 36.000 212.333 552.000 76.333 3.833 
7.733 28.333 1.333 1,011.000 316.666 70.333 33.666 202.000 526.000 71.666 3.633 
Table 10

Laboratory chemical and physical indicators for raw water for Al-Hashimyah project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.200 28.800 14.000 1,037.666 402.666 101.000 28.000 305.333 684.666 72.333 2.800 0.253 
11 7.200 24.966 12.000 980.666 342.666 87.000 30.500 270.000 610.000 75.666 3.133 0.263 
12 7.466 19.000 12.000 932.333 365.000 76.333 43.666 213.666 570.333 68.000 4.133 0.243 
7.133 18.000 6.000 949.333 312.333 71.666 38.000 208.333 551.666 71.000 3.366 0.256 
7.167 18.433 8.600 950.333 314.000 71.333 36.333 212.667 553.667 71.667 3.333 0.277 
7.200 18.567 10.667 951.667 315.000 70.333 35.333 213.667 554.333 72.000 3.300 0.287 
7.266 20.000 11.500 948.333 319.000 71.666 36.666 211.333 554.333 71.000 3.533 0.3 
7.200 22.000 9.666 944.666 317.000 69.000 34.666 209.333 551.333 68.000 3.566 0.286 
7.400 24.000 13.666 900.000 305.000 70.333 31.000 200.000 555.000 67.000 3.433 0.283 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.200 28.800 14.000 1,037.666 402.666 101.000 28.000 305.333 684.666 72.333 2.800 0.253 
11 7.200 24.966 12.000 980.666 342.666 87.000 30.500 270.000 610.000 75.666 3.133 0.263 
12 7.466 19.000 12.000 932.333 365.000 76.333 43.666 213.666 570.333 68.000 4.133 0.243 
7.133 18.000 6.000 949.333 312.333 71.666 38.000 208.333 551.666 71.000 3.366 0.256 
7.167 18.433 8.600 950.333 314.000 71.333 36.333 212.667 553.667 71.667 3.333 0.277 
7.200 18.567 10.667 951.667 315.000 70.333 35.333 213.667 554.333 72.000 3.300 0.287 
7.266 20.000 11.500 948.333 319.000 71.666 36.666 211.333 554.333 71.000 3.533 0.3 
7.200 22.000 9.666 944.666 317.000 69.000 34.666 209.333 551.333 68.000 3.566 0.286 
7.400 24.000 13.666 900.000 305.000 70.333 31.000 200.000 555.000 67.000 3.433 0.283 
Table 11

Laboratory chemical and physical indicators for treated water for Al-Hashimyah project

MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.200 28.566 5.000 1,039.333 394.333 112.000 28.666 304.666 688.666 73.333 2.666 
11 7.366 24.233 2.833 1,002.000 360.666 88.666 33.666 265.333 660.000 71.666 3.133 
12 7.400 20.333 4.200 942.333 364.000 75.666 43.333 209.000 581.000 68.000 4.100 
7.166 17.866 1.066 947.666 311.000 70.333 36.000 213.000 583.000 69.666 3.333 
7.267 18.267 1.067 949.333 313.333 70.333 36.666 213.000 576.000 71.000 3.300 
7.267 18.267 1.133 950.333 313.667 69.333 36.333 212.333 577.000 71.333 3.300 
7.300 19.666 1.000 949.000 317.000 71.000 37.333 210.000 560.333 70.333 3.500 
7.200 21.333 1.133 946.666 315.000 69.333 36.000 208.333 557.000 69.666 3.500 
7.300 23.666 0.966 902.666 311.000 69.666 32.666 197.333 558.333 67.666 3.533 
MonthpHTempTurbECTHCaMgSO4TDSNakBOD
10 7.200 28.566 5.000 1,039.333 394.333 112.000 28.666 304.666 688.666 73.333 2.666 
11 7.366 24.233 2.833 1,002.000 360.666 88.666 33.666 265.333 660.000 71.666 3.133 
12 7.400 20.333 4.200 942.333 364.000 75.666 43.333 209.000 581.000 68.000 4.100 
7.166 17.866 1.066 947.666 311.000 70.333 36.000 213.000 583.000 69.666 3.333 
7.267 18.267 1.067 949.333 313.333 70.333 36.666 213.000 576.000 71.000 3.300 
7.267 18.267 1.133 950.333 313.667 69.333 36.333 212.333 577.000 71.333 3.300 
7.300 19.666 1.000 949.000 317.000 71.000 37.333 210.000 560.333 70.333 3.500 
7.200 21.333 1.133 946.666 315.000 69.333 36.000 208.333 557.000 69.666 3.500 
7.300 23.666 0.966 902.666 311.000 69.666 32.666 197.333 558.333 67.666 3.533 

Weighted arithmetic index method

Raw water quality index (RWQI)

The raw water quality index results for all stations are shown in Table 12. It was found that the quality of raw water for all stations ranged between (53.977) in the HA station in January and (138,586) in the HE station in October. In addition, the mean WQI of the river ranged from (87,246) in the HA station to (109.006) in the HE station. From these WQI values and according to Table 4, the river water was classified as ‘highly polluted’ to ‘unfit for drinking’ for the studied stations during the study period of the year (2020–2021). The poor water quality in the Hilla River is due to the untreated household pollutant disposal site, which was discharged directly through wastewater (Singh 2010). The monthly values (WQI) of raw water are shown in Figure 2, and this figure represents (WQI) of the stations selected during the study period.

Table 12

Raw water quality index values of the stations

Month(2020–2021)
NHHEHA
10/2020 115.289 138.586 104.564 
11/2020 92.031 112.362 93.366 
12/2020 91.456 100.048 102.327 
1/2021 83.969 109.887 53.977 
2/2021 91.670 99.645 70.152 
3/2021 95.819 98.975 83.133 
4/2021 90.725 99.573 91.075 
5/2021 89.694 101.241 78.092 
6/2021 103.376 120.740 108.527 
Mean 94.892 109.006 87.246 
Month(2020–2021)
NHHEHA
10/2020 115.289 138.586 104.564 
11/2020 92.031 112.362 93.366 
12/2020 91.456 100.048 102.327 
1/2021 83.969 109.887 53.977 
2/2021 91.670 99.645 70.152 
3/2021 95.819 98.975 83.133 
4/2021 90.725 99.573 91.075 
5/2021 89.694 101.241 78.092 
6/2021 103.376 120.740 108.527 
Mean 94.892 109.006 87.246 
Figure 2

Temporal variation in WQI from October 2020 to June 2021 for raw water.

Figure 2

Temporal variation in WQI from October 2020 to June 2021 for raw water.

Close modal
Treated water quality index (TWQI)

Table 13 shows the variation in (WQI) monthly values of treated water for the specified stations during the study period. The treated water quality index (TWQI) ranged between (34.237–58.271), (52.952–76.171) and (31.986–72.142) in NH, HE and HA, respectively. This means that the treated water ranges from ‘Poor' to ‘Marginal' at the NH plant, ‘Marginal' to ‘Fair' at the HE plant, and ‘Poor’ to ‘Fair' at the HA station. The monthly values (WQI) of the treated water are plotted according to Figure 3.

Table 13

Treated water quality index values of the stations

Month(2020–2021)
NHHEHA
10 53.832 76.171 67.848 
11 55.307 67.579 58.706 
12 34.237 69.583 72.142 
36.690 62.275 31.986 
51.240 63.876 37.467 
58.271 52.952 37.981 
53.765 57.404 39.556 
56.692 60.574 35.767 
50.378 68.300 33.430 
Mean 50.046 64.302 46.098 
Month(2020–2021)
NHHEHA
10 53.832 76.171 67.848 
11 55.307 67.579 58.706 
12 34.237 69.583 72.142 
36.690 62.275 31.986 
51.240 63.876 37.467 
58.271 52.952 37.981 
53.765 57.404 39.556 
56.692 60.574 35.767 
50.378 68.300 33.430 
Mean 50.046 64.302 46.098 
Figure 3

Temporal Variation in WQI from October 2020 to June 2021 for treated water.

Figure 3

Temporal Variation in WQI from October 2020 to June 2021 for treated water.

Close modal
Figure 4

Graphical comparison of water quality index for three treatment plants (by Weighted arithmetic method).

Figure 4

Graphical comparison of water quality index for three treatment plants (by Weighted arithmetic method).

Close modal
Figure 5

Graphical comparison of water quality index for three treatment plants (by Canadian method).

Figure 5

Graphical comparison of water quality index for three treatment plants (by Canadian method).

Close modal

The mean efficiency (E%) was calculated using Equation (5). As shown in Table 14 and Figure 4, the New Hilla treatment plant was efficient compared to the other water treatment plants. The quality of treated water has decreased along the river (from Al-Hussein station to Al-Hashimyah station) due to low raw water quality and low water efficiency (E%).

Table 14

Mean efficiency (E %) of the stations (AbdAL-Hussein 2015)

Year(2020–2021)
StationNHHEHA
E % 47.13 40.78 47.04 
Year(2020–2021)
StationNHHEHA
E % 47.13 40.78 47.04 

CCME WQI method

Table 15 and Figure 5 show a summary of the values of F1, F2, F3, CCME WQI values and water quality assessment for all stations, where the raw water quality value was (81.232), (79.307) and (80.931) for the three stations respectively. This indicates that the water quality can be classified as ‘good' for NH, ‘acceptable' for HE and ‘good' for HA. This is because some standards for raw water samples such as Tur, Ca and EC exceed water quality standards (Rachedi & Amarchi 2015). Human actions also affect water quality, with wastewater pollution and agricultural runoff from lands near the river affecting water quality (Hassan et al. 2018). The results showed that the treated water is of high value, as the value of treated water ranged between 94,620 and 94.718, indicating that the quality of the treated water in the three plants was ‘good’. The higher concentration of criteria may be caused by either local sewage pollution or the high presence because river or rain velocities are very high, and soil filtration is high (Alobaidy et al. 2010; Rachedi & Amarchi 2015; Hassan et al. 2018).

Table 15

F1, F2, F3 and CCME WQI values and water quality classification of the stations

Year/Stations(2020–2021)
NHHEHA
Raw water CCME WQI value 81.232 79.307 80.931 
Classification Good Fair Good 
F1 25 25 25 
f2 17.592 21.296 17.592 
F3 11.050 14.351 12.501 
Treated water CCME WQI value 94.718 94.620 94.718 
Classification Good Good Good 
F1 9.090 9.090 9.090 
f2 1.010 2.020 1.010 
F3 0.158 0.296 0.143 
Year/Stations(2020–2021)
NHHEHA
Raw water CCME WQI value 81.232 79.307 80.931 
Classification Good Fair Good 
F1 25 25 25 
f2 17.592 21.296 17.592 
F3 11.050 14.351 12.501 
Treated water CCME WQI value 94.718 94.620 94.718 
Classification Good Good Good 
F1 9.090 9.090 9.090 
f2 1.010 2.020 1.010 
F3 0.158 0.296 0.143 

Table 16 summarizes the water quality in each specific station using the weighted calculation method and CCME water quality indicators, and the result from the treated water shows the convergence of the indicators for all stations. Meanwhile, the difference in points is clearly visible in the state of raw water in all stations, so the water quality ranged between ‘highly polluted’ and ‘unsafe for drinking’ by the method of weighted calculation, while it was ‘good’ to ‘fair’ according to Canadian method. The study believed that the difference of scores might be related to the index theory on which the criterion was built and that CCME gave a higher level of water quality that could be considered and thus a more flexible weighted calculation method. Although indicators are used to determine water quality worldwide, no indication has been accepted as universal. This allows researchers, environmental agencies, policymakers, and others to continue exploring and modifying existing ones to obtain a more accurate, transparent, comprehensive and global index.

Table 16

The treated water quality of each station and each index

WQI
NH
HE
HA
RWTWRWTWRWTW
Mean of weighted arithmetic 94.892
Severely polluted 
50.046
Good water 
109.006
Unfit and unsuitable for drinking 
64.302
Moderately polluted 
87.246
Severely polluted 
47.028 Good water 
CCME 81.232
Good 
94.718
Good 
79.307
Fair 
94.620
Good 
80.931
Good 
94.718
Good 
WQI
NH
HE
HA
RWTWRWTWRWTW
Mean of weighted arithmetic 94.892
Severely polluted 
50.046
Good water 
109.006
Unfit and unsuitable for drinking 
64.302
Moderately polluted 
87.246
Severely polluted 
47.028 Good water 
CCME 81.232
Good 
94.718
Good 
79.307
Fair 
94.620
Good 
80.931
Good 
94.718
Good 
Table 17

Means, standard deviations, and average error of the characteristics for the New Hilla project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 94.89 3.08 9.24 
3.31 0.15 0.44 
Na 68.41 1.62 4.87 
TDS 560.15 18.42 55.26 
SO4 227.70 11.35 34.05 
Mg 33.59 1.20 3.60 
Ca 72.74 6.12 18.36 
T.H 330.22 11.67 35.00 
EC 935.67 15.62 46.87 
Turb 10.16 0.55 1.64 
Temp 21.57 1.38 4.13 
PH 7.56 0.05 0.15 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 94.89 3.08 9.24 
3.31 0.15 0.44 
Na 68.41 1.62 4.87 
TDS 560.15 18.42 55.26 
SO4 227.70 11.35 34.05 
Mg 33.59 1.20 3.60 
Ca 72.74 6.12 18.36 
T.H 330.22 11.67 35.00 
EC 935.67 15.62 46.87 
Turb 10.16 0.55 1.64 
Temp 21.57 1.38 4.13 
PH 7.56 0.05 0.15 
Table 18

Means, standard deviations, and average error of the characteristics for the Al Hussein project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 109.01 4.48 13.43 
3.74 0.14 0.41 
Na 75.15 2.91 8.74 
TDS 568.22 15.41 46.23 
SO4 228.78 10.86 32.59 
Mg 34.63 1.32 3.95 
Ca 75.63 5.19 15.57 
T.H 334.41 8.73 26.19 
EC 994.44 15.26 45.78 
Turb 12.41 0.92 2.76 
Temp 23.22 1.34 4.02 
PH 7.58 0.06 0.17 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 109.01 4.48 13.43 
3.74 0.14 0.41 
Na 75.15 2.91 8.74 
TDS 568.22 15.41 46.23 
SO4 228.78 10.86 32.59 
Mg 34.63 1.32 3.95 
Ca 75.63 5.19 15.57 
T.H 334.41 8.73 26.19 
EC 994.44 15.26 45.78 
Turb 12.41 0.92 2.76 
Temp 23.22 1.34 4.02 
PH 7.58 0.06 0.17 
Table 19

Means, standard deviations, and average error of the characteristics for the Hashimyah project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 87.25 5.93 17.79 
3.40 0.12 0.36 
Na 70.74 0.90 2.70 
TDS 576.15 14.94 44.83 
SO4 227.15 11.89 35.67 
Mg 34.91 1.55 4.66 
Ca 76.52 3.57 10.70 
T.H 332.52 10.75 32.24 
EC 955.00 12.50 37.50 
Turb 10.90 0.84 2.52 
Temp 21.53 1.24 3.72 
PH 6.45 0.81 2.42 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 87.25 5.93 17.79 
3.40 0.12 0.36 
Na 70.74 0.90 2.70 
TDS 576.15 14.94 44.83 
SO4 227.15 11.89 35.67 
Mg 34.91 1.55 4.66 
Ca 76.52 3.57 10.70 
T.H 332.52 10.75 32.24 
EC 955.00 12.50 37.50 
Turb 10.90 0.84 2.52 
Temp 21.53 1.24 3.72 
PH 6.45 0.81 2.42 
Table 20

Means, standard deviations, and average error of the characteristics for the new Hilla project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 50.05 2.88 8.64 
3.34 0.14 0.41 
Na 68.78 1.52 4.56 
TDS 559.56 17.26 51.77 
SO4 225.15 11.75 35.24 
Mg 33.33 1.06 3.18 
Ca 72.26 5.70 17.09 
T.H 328.33 10.63 31.89 
EC 936.74 15.10 45.31 
Turb 0.73 0.17 0.52 
Temp 21.91 1.32 3.97 
PH 7.53 0.05 0.16 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 50.05 2.88 8.64 
3.34 0.14 0.41 
Na 68.78 1.52 4.56 
TDS 559.56 17.26 51.77 
SO4 225.15 11.75 35.24 
Mg 33.33 1.06 3.18 
Ca 72.26 5.70 17.09 
T.H 328.33 10.63 31.89 
EC 936.74 15.10 45.31 
Turb 0.73 0.17 0.52 
Temp 21.91 1.32 3.97 
PH 7.53 0.05 0.16 
Table 21

Means, standard deviations, and average error of the characteristics for the Al-Hussain project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 64.30 2.33 6.98 
3.78 0.13 0.40 
Na 77.78 2.36 7.09 
TDS 583.70 16.49 49.48 
SO4 229.11 10.07 30.22 
Mg 35.89 1.46 4.39 
Ca 76.78 5.25 15.75 
T.H 340.78 9.27 27.80 
EC 1,008.96 15.84 47.51 
Turb 2.34 0.36 1.07 
Temp 22.61 1.34 4.01 
PH 7.53 0.04 0.11 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 64.30 2.33 6.98 
3.78 0.13 0.40 
Na 77.78 2.36 7.09 
TDS 583.70 16.49 49.48 
SO4 229.11 10.07 30.22 
Mg 35.89 1.46 4.39 
Ca 76.78 5.25 15.75 
T.H 340.78 9.27 27.80 
EC 1,008.96 15.84 47.51 
Turb 2.34 0.36 1.07 
Temp 22.61 1.34 4.01 
PH 7.53 0.04 0.11 
Table 22

Means, standard deviations, and average error of the characteristics for the Hashimyah project

The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 47.03 5.01 15.04 
3.37 0.13 0.38 
Na 70.30 0.60 1.79 
TDS 593.48 15.81 47.42 
SO4 225.89 11.75 35.25 
Mg 35.63 1.32 3.96 
Ca 77.37 4.80 14.40 
T.H 333.33 10.41 31.22 
EC 958.81 13.07 39.22 
Turb 2.04 0.52 1.57 
Temp 21.36 1.18 3.55 
PH 7.27 0.03 0.08 
The characteristicsNMean
Std. deviation
StatisticStatisticStd. errorStatistic
WQI 47.03 5.01 15.04 
3.37 0.13 0.38 
Na 70.30 0.60 1.79 
TDS 593.48 15.81 47.42 
SO4 225.89 11.75 35.25 
Mg 35.63 1.32 3.96 
Ca 77.37 4.80 14.40 
T.H 333.33 10.41 31.22 
EC 958.81 13.07 39.22 
Turb 2.04 0.52 1.57 
Temp 21.36 1.18 3.55 
PH 7.27 0.03 0.08 

Raw water for three stations

The following are the results of the descriptive statistics of raw water data for the New Hilla project for the year (2020–2021), which were recorded according to the characteristics of each factor and the value of the general averages, standard deviations and standard error rate for each of them. The truth is described in detail in Tables 1719:

Drinking water for three stations

The following are the results of the descriptive statistics of raw water data for the New Hilla project for the year (2020–2021), which were recorded according to the characteristics of each factor and the value of the general averages, standard deviations and standard error rate for each of them. The truth is described in detail in Tables 2022.

Finally, the authors of this work recommend using sensing systems to monitor the water quality of freshwater. The possible sensing methods are electromagnetic sensors (Omer et al. 2021; Ryecroft et al. 2021) and microwaves (Omer et al. 2021; Ryecroft et al. 2021). Also, it recommended monitoring the emissions of local industries due to their direct effects on the quality of surface water. For example, there are cement plants in the city of Babylon, and the emissions of this industry are responsible for many pollutions problems (Kadhim et al. 2020; Majdi et al. 2020; Mousazadeh et al. 2021), such as particulates (Shubbar et al. 2020a; Kadhim et al. 2021) and carbon dioxide (Shubbar et al. 2020b).

From this work, the following can be concluded:

  • 1.

    The mathematical method shows that the water quality index for the three stations ranged from good water to unfit and unsuitable for drinking.

  • 2.

    The results of the water quality index were good water to fair according to the Canadian method.

  • 3.

    Most of the water quality index results were good. In the case of the Canadian method, CCME WQI is more flexible than other methods used to calculate quality.

  • 4.

    The new Al-Hilla water treatment plant was more efficient than the Al-Hussein and Al-Hashimyah plant.

  • 5.

    The low water quality in these stations along the Hilla River can also be noted as a result of the low quality of raw water and the low water efficiency in these stations.

  • 6.

    There is a strong correlation between chemical and physical indicators with water quality.

Additionally, the following recommendations are suggested for future studies:

  • 1.

    Study the effect of another parameter such as Cl, P, Na, and so on, and study more physical and chemical measures must be tested.

  • 2.

    Use other types of international indices to explain more carefully the water quality index and parameters affected.

  • 3.

    Extend the study from upstream to downstream at all seasons to include other parameters such as heavy metals and microbial studies in an exhaustive view of the functioning of the river.

  • 4.

    Use another statistical analysis method to explain the relationship between parameters and the water quality, such as ANN.

Data cannot be made publicly available; readers should contact the corresponding author for details.

AbdAL-Hussein
N. A.
2015
Evaluation of raw and treated water quality of Hilla River within Babylon province by index analysis
.
Mesopotamia Environmental Journal
1
,
16
25
.
Abdulhadi
B.
,
Kot
P.
,
Hashim
K.
,
Shaw
A.
,
Muradov
M.
&
Al-Khaddar
R.
2021
Continuous-flow electrocoagulation (EC) process for iron removal from water: experimental, statistical and economic study
.
Science of The Total Environment
760
(
2
),
1
16
.
Abdulla
G.
,
Kareem
M. M.
,
Hashim
K. S.
,
Muradov
M.
,
Kot
P.
,
Mubarak
H. A.
,
Abdellatif
M.
&
Abdulhadi
B.
2020
Removal of iron from wastewater using a hybrid filter
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012035
.
IOP Publishing, Bristol, UK
.
Abdulraheem
F. S.
,
Al-Khafaji
Z. S.
,
Hashim
K. S.
,
Muradov
M.
,
Kot
P.
&
Shubbar
A. A.
2020
Natural filtration unit for removal of heavy metals from water
.
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012034
.
Alenazi
M.
,
Hashim
K. S.
,
Hassan
A. A.
,
Muradov
M.
,
Kot
P.
&
Abdulhadi
B.
2020a
Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012064
.
Alenezi
A. K.
,
Hasan
H. A.
,
Hashim
K. S.
,
Amoako-Attah
J.
,
Gkantou
M.
,
Muradov
M.
,
Kot
P.
&
Abdulhadi
B.
2020b
Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012031
.
Al-Hashimi
O.
,
Hashim
K.
,
Loffill
E.
,
Marolt Čebašek
T.
,
Nakouti
I.
,
Faisal
A. A.
&
Al-Ansari
N.
2021
A comprehensive review for groundwater contamination and remediation: occurrence, migration and adsorption modelling
.
Molecules
26
,
5913
.
Alhendal
M.
,
Nasir
M. J.
,
Hashim
K. S.
,
Amoako-Attah
J.
,
Al-Faluji
D.
,
Muradov
M.
,
Kot
P.
&
Abdulhadi
B.
2020
Cost-effective hybrid filter for remediation of water from fluoride
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012038
.
Al-Jumeily
D.
,
Hashim
K.
,
Alkaddar
R.
&
Lunn
J.
2019
Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future)
. In:
11th International Conference on Developments in ESystems Engineering
.
Cambridge, UK
, pp.
214
219
.
Al-Mansori
N. J.
2017
Develop and apply water quality index to evaluate.pdf
.
Journal of Babylon University/Engineering Sciences
25
(
2
),
368
374
.
Al-Marri
S.
,
AlQuzweeni
S. S.
,
Hashim
K. S.
,
AlKhaddar
R.
,
Kot
P.
,
AlKizwini
R. S.
,
Zubaidi
S. L.
&
Al-Khafaji
Z. S.
2020
Ultrasonic-electrocoagulation method for nitrate removal from water
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012073
.
Alnaimi
H.
,
Idan
I. J.
,
Al-Janabi
A.
,
Hashim
K.
,
Gkantou
M.
,
Zubaidi
S. L.
,
Kot
P.
&
Muradov
M.
2020
Ultrasonic-electrochemical Treatment for Effluents of Concrete Plants
.
Presented at the IOP Conference Series Materials Science and Engineering University of Kufa
,
Najaf, Iraq
.
Alobaidy
A. H. M. J.
,
Maulood
B. K.
&
Kadhem
A. J.
2010
Evaluating raw and treated water quality of Tigris River within Baghdad by index analysis
.
Journal of Water Resource and Protection
2
(
7
),
629
.
Al-Saati
N. H.
,
Omran
I. I.
,
Salman
A. A.
,
Al-Saati
Z.
&
Hashim
K. S.
2021
Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study
.
Water Practice and Technology
16
(
2
),
681
691
.
Al-Sareji
O. J.
,
Grmasha
R. A.
,
Salman
J. M.
,
Idowu
I.
&
Hashim
K. S.
2021
Street dust contamination by heavy metals in Babylon governorate, Iraq
.
Journal of Engineering Science and Technology
16
(
1
),
3528
3546
.
Alyafei
A.
,
AlKizwini
R. S.
,
Hashim
K. S.
,
Yeboah
D.
,
Gkantou
M.
,
Al Khaddar
R.
,
Al-Faluji
D.
&
Zubaidi
S. L.
2020
Treatment of effluents of construction industry using a combined filtration-electrocoagulation method
.
IOP Conference Series: Materials Science and Engineering
888
,
012032
.
APHA
.
2005
Standard Methods For the Examination of Water and Wastewater
, 21st ed.
American Public Health Association (APHA)
,
Washington, DC, USA
.
Aqeel
K.
,
Mubarak
H. A.
,
Amoako-Attah
J.
,
Abdul-Rahaim
L. A.
,
Al Khaddar
R.
,
Abdellatif
M.
,
Al-Janabi
A.
&
Hashim
K. S.
2020
Electrochemical removal of brilliant Green dye from wastewater
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012036
.
Călmuc
V. A.
,
Călmuc
M.
,
¸Topa
M. C.
,
Timofti
M.
,
Iticescu
C.
&
Georgescu
L. P.
2018
Various methods for calculating the water quality index
.
Analele Universită¸tii’ Dunărea de Jos’ din Gala¸ti. Fascicula II, Matematică, Fizică, Mecanică Teoretică/Annals of The’ Dunarea de Jos’ University of Galati. Fascicle II, Mathematics, Physics, Theoretical Mechanics
41
(
2
),
171
178
.
Emamjomeh
M. M.
,
Kakavand
S.
,
Jamali
H. A.
,
Alizadeh
S. M.
,
Safdari
M.
,
Mousavi
S. E. S.
,
Hashim
K. S.
&
Mousazade
M.
2020a
The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics
.
Desalination and Water Treatment
205
,
161
174
.
Emamjomeh
M. M.
,
Mousazadeh
M.
,
Mokhtari
N.
,
Jamali
H. A.
,
Makkiabadi
M.
,
Naghdali
Z.
,
Hashim
K. S.
&
Ghanbari
R.
2020b
Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: optimization of coupled electrochemical and physical processes
.
Separation Science and Technology
55
(
17
),
3184
3194
.
Farhan
S. L.
,
Antón
D.
,
Akef
V. S.
,
Zubaidi
S. L.
&
Hashim
K. S.
2021
Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf
.
Scientific Review Engineering and Environmental Sciences
30
(
2
),
365
375
.
Grmasha
R. A.
,
Al-sareji
O. J.
,
Salman
J. M.
,
Hashim
K. S.
&
Jasim
I. A.
2020
Polycyclic aromatic hydrocarbons (PAHs) in urban street dust within three land-uses of Babylon governorate, Iraq: distribution, sources, and health risk assessment
.
Journal of King Saud University – Engineering Sciences
33
,
1
18
.
Hashim
K. S.
,
AlKhaddar
R.
,
Shaw
A.
,
Kot
P.
,
Al-Jumeily
D.
,
Alwash
R.
&
Aljefery
M. H.
2020a
Electrocoagulation as an eco-friendly river water treatment method
. In:
Advances in Water Resources Engineering and Management
.
Springer
,
Berlin
, pp.
219
235
.
Hashim
K.
,
Kot
P.
,
Zubaid
S.
,
Alwash
R.
,
Al Khaddar
R.
,
Shaw
A.
,
Al-Jumeily
D.
&
Aljefery
M.
2020b
Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia coli removal from wastewater
.
Journal of Water Process Engineering
33
(
20
),
101079
101086
.
Hashim
K. S.
,
Ali
S. S. M.
,
AlRifaie
J. K.
,
Kot
P.
,
Shaw
A.
,
Al Khaddar
R.
,
Idowu
I.
&
Gkantou
M.
2020c
Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor
.
Chemosphere
247
,
125868
125875
.
Hashim
K. S.
,
Shaw
A.
,
AlKhaddar
R.
,
Kot
P.
&
Al-Shamma'a
A.
2021a
Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment
.
Journal of Cleaner Production
280
(
2
),
1
17
.
Hashim
K. S.
,
Ewadh
H. M.
,
Muhsin
A. A.
,
Zubaidi
S. L.
,
Kot
P.
,
Muradov
M.
,
Aljefery
M.
&
Al-Khaddar
R.
2021b
Phosphate removal from water using bottom ash: adsorption performance, coexisting anions and modelling studies
.
Water Science and Technology
83
(
1
),
77
89
.
Kadhim
A.
,
Sadique
M.
,
Al-Mufti
R.
&
Hashim
K.
2020
Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust
.
Journal of Building Engineering
32
,
1
17
.
Kadhim
A.
,
Sadique
M.
,
Al-Mufti
R.
&
Hashim
K.
2021
Developing one-part alkali-activated metakaolin/natural pozzolan binders using lime waste as activation agent
.
Advances in Cement Research
33
(
8
),
342
356
.
Lumb
A.
,
Halliwell
D.
&
Sharma
T.
2006
Application of CCME water quality index to monitor water quality: a case study of the Mackenzie River basin, Canada
.
Environmental Monitoring and Assessment
113
(
1
),
411
429
.
Mahagamage
M.
&
Manage
P. M.
2014
Water quality index (CCME-WQI) based assessment study of water quality in Kelani River basin, Sri Lanka
. In:
The 1st Environment and Natural Resources International Conference (ENRIC 2014)
, Vol.
1
.
Mahidol University
,
Thailand
, pp.
199
204
.
Majdi
H. S.
,
Shubbar
A.
,
Nasr
M. S.
,
Al-Khafaji
Z. S.
,
Jafer
H.
,
Abdulredha
M.
,
Masoodi
Z. A.
,
Sadique
M.
&
Hashim
K.
2020
Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations
.
Data in Brief
31
,
105961
105972
.
Mousazadeh
M.
,
Paital
B.
,
Naghdali
Z.
,
Mortezania
Z.
,
Hashemi
M.
,
Karamati Niaragh
E.
,
Aghababaei
M.
,
Ghorbankhani
M.
,
Lichtfouse
E.
,
Sillanpää
M.
,
Hashim
K. S.
&
Emamjomeh
M. M.
2021
Positive environmental effects of the coronavirus 2020 episode: a review
.
Environment, Development and Sustainability
21
,
1
23
.
Obaid
M. K.
,
Nasr
M. S.
,
Ali
I. M.
,
Shubbar
A. A.
&
Hashim
K. S.
2021
Performance of Green mortar made from locally available waste tiles and silica fume
.
Journal of Engineering Science and Technology
16
(
1
),
136
151
.
Omer
G.
,
Kot
P.
,
Atherton
W.
,
Muradov
M.
,
Gkantou
M.
,
Shaw
A.
,
Riley
M.
,
Hashim
K.
&
Al-Shamma'a
A.
2021
A non-destructive electromagnetic sensing technique to determine chloride level in maritime concrete
.
Karbala International Journal of Modern Science
7
,
61
71
.
Omran
I. I.
,
Al-Saati
N. H.
,
Al-Saati
H. H.
,
Hashim
K. S.
&
Al-Saati
Z. N.
2021
Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA)
.
Water Practice and Technology
16
(
2
),
648
660
.
Ponsadailakshmi
S.
,
Sankari
S. G.
,
Prasanna
S. M.
&
Madhurambal
G.
2018
Evaluation of water quality suitability for drinking using drinking water quality index in Nagapattinam district, Tamil Nadu in Southern India
.
Groundwater for Sustainable Development
6
,
43
49
.
Rachedi
L. H.
&
Amarchi
H.
2015
Assessment of the water quality of the Seybouse River (north-east Algeria) using the CCME WQI model
.
Water Science and Technology: Water Supply
15
(
4
),
793
801
.
Ranjbar
J. A.
,
Masoodi
M.
,
Sharifiniya
M.
&
Riyahi
B. A.
2016
Integrated river quality management by CCME WQI as an effective tool to characterize surface water source pollution (Case study: Karun River, Iran)
.
Pollution
2
(
3
),
313
330
.
Ryecroft
S.
,
Shaw
A.
,
Fergus
P.
,
Kot
P.
,
Hashim
K.
,
Tang
A.
,
Moody
A.
&
Conway
L.
2021
An implementation of a multi-hop underwater wireless sensor network using bowtie antenna
.
Karbala International Journal of Modern Science
7
,
113
129
.
Salah
Z.
,
Ortega-Martorell
S.
,
Kot
P.
,
Alkhaddar
R. M.
,
Abdellatif
M.
,
Gharghan
S. K.
,
Ahmed
M. S.
&
Hashim
K.
2020a
A method for predicting long-term municipal water demands under climate change
.
Water Resources Management
34
(
3
),
1265
1279
.
Salah
Z.
,
Abdulkareem
I. H.
,
Hashim
K. S.
,
Al-Bugharbee
H.
,
Ridha
H. M.
,
Gharghan
S. K.
,
Al-Qaim
F. F.
,
Muradov
M.
,
Kot
P.
&
Alkhaddar
R.
2020b
Hybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction urban stochastic water demand
.
Water
12
(
10
),
1
18
.
Salah
Z.
,
Hashim
K.
,
Ethaib
S.
,
Al-Bdairi
N. S. S.
,
Al-Bugharbee
H.
&
Gharghan
S. K.
2020c
A novel methodology to predict monthly municipal water demand based on weather variables scenario
.
Journal of King Saud University-Engineering Sciences
32
(
7
),
1
18
.
Salman
J.
,
Al-Azawey
A.
&
Hassan
F.
2013
Study of bacterial indicators in water and sediments from Al-Hilla river, Iraq
.
Hydrol Current Res S
13
(
2
).
Saod
W. M.
,
Mohammed
E. A.
&
Hussenc
A. H.
2019
Euphrates river water quality studies in Iraq: critical review
.
Anbar Journal of Engineering Sciences
8
(
1
),
61
66
.
Şener
Ş.
,
Şener
E.
&
Davraz
A.
2017
Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey)
.
Science of the Total Environment
584
,
131
144
.
Shubbar
A. A.
,
Sadique
M.
,
Nasr
M. S.
,
Al-Khafaji
Z. S.
&
Hashim
K. S.
2020a
The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash
.
Karbala International Journal of Modern Science
6
(
4
),
1
23
.
Shubbar
A. A.
,
Sadique
M.
,
Shanbara
H. K.
&
Hashim
K.
2020b
The Development of a New Low Carbon Binder for Construction as an Alternative to Cement
. In:
Advances in Sustainable Construction Materials and Geotechnical Engineering
, 1st eds.
Springer
,
Berlin
, pp.
205
213
.
Singh
R. R. a. G.
2010
Assessment of ground water quality status by using water quality index method in Orissa, India
.
World Applied Sciences Journal
9
(
12
),
1392
1397
.
Zaid Abed Al-Ridah
,
Al-Zubaidi
H. A. M.
,
Samir
A.
&
Ali
I. M.
2020
Drinking water quality assessment by using water quality index (WQI) for Hillah River, Iraq
.
Ecology, Environment and Conservation
26
(
1
),
390
399
.
Zanki
A. K.
,
Mohammad
F. H.
,
Hashim
K. S.
,
Muradov
M.
,
Kot
P.
,
Kareem
M. M.
&
Abdulhadi
B.
2020
Removal of organic matter from water using ultrasonic-assisted electrocoagulation method
.
in IOP Conference Series: Materials Science and Engineering
888
(
1
),
012033
.
IOP Publishing, Bristol, UK
.
Zubaidi
S.
,
Al-Bugharbee
H.
,
Muhsin
Y. R.
,
Hashim
K.
&
Alkhaddar
R.
2020a
Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study
. In:
IOP Conference Series: Materials Science and Engineering
888
(
1
),
012018
.
IOP Publishing, Bristol, UK
.
Zubaidi
S.
,
Ortega-Martorell
S.
,
Al-Bugharbee
H.
,
Olier
I.
,
Hashim
K. S.
,
Gharghan
S. K.
,
Kot
P.
&
Al-Khaddar
R.
2020b
Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study
.
Water
12
(
7
),
1
18
.
Zubaidi Salah
L.
,
Al-Bugharbee
H.
,
Ortega Martorell
S.
,
Gharghan
S.
,
Olier
I.
,
Hashim
K.
,
Al-Bdairi
N.
&
Kot
P.
2020
A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach
.
Water
12
(
6
),
1
17
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).