The world is facing an acute water shortage. The present irrigation techniques used in the Hyderabad district, Pakistan, are not demand-driven. The present study was carried out to determine the crop water requirement (CWR), irrigation water requirement (IWR), and irrigation scheduling for major crops grown in the Hyderabad district using the CROPWAT model based on climatic, soil, and crop data. The analysis revealed that the total CWR for the entire growing season for sugarcane, banana, cotton, and wheat were 3,127.0; 2,012.3; 1,073.5; and 418.9 mm, respectively. However, the IWR for sugarcane, banana, cotton, and wheat for the entire growing season was found to be 2,964.0; 1,966.7; 1,052.7; and 407.6 mm, respectively. However, the contribution of rainfall was 163.0, 45.6, 20.8, and 11.3 mm during sugarcane, banana, cotton, and wheat, respectively. The CWR and IWR were higher during the dry season due to high temperatures and low relative humidity. However, the IWR of each crop was low in the initial stage which increased with the growing stage until the peak at the full growth stage. The study recommends the use of CROPWAT to investigate the irrigation water requirements with accuracy.

  • Investigation for crop water requirement (CWR) for wheat, cotton, banana, and sugarcane.

  • Investigation for irrigation water requirement (IWR).

  • Investigation for irrigation scheduling.

  • Use of climatic, soil, and crop data.

  • Use of scientific tools, i.e., CROPWAT and CLIMAT models.

Graphical Abstract

Graphical Abstract
Graphical Abstract

Soil, water, and plants are natural resources that are very important for the survival of humans and animals (Shah et al. 2022). These three resources must be managed scientifically and efficiently to achieve maximum food production and meet the needs of an ever-growing population. Throughout the growing season of a crop, a certain amount of water is required at certain predetermined intervals. Water is a fundamental factor in ensuring crop production. Water dissolves mineral nutrients that travel through the stem into the plant. At the end of a plant's life cycle, water is also a component of the economic product, which may be a seed, stem, leaf, flower, or fruit. In plant production, in tropical countries, the first two of the three basic needs of plant growth, heat and light are abundant, but the third, moisture, must often be supplemented by artificial water supply, i.e., irrigation. In the eyes of scientists and policymakers, freshwater scarcity is the second most important environmental problem of the 21st century after climate change (UNEP 1999). Currently, about 87% of consumptive water and 70% of global water withdrawals are used for irrigation purposes (Shiklomanov 1997). About 40–45% of the world's food is produced on irrigated agricultural land, which accounts for less than one-fifth of the total cultivated land. It is a fact that water demand for various purposes will increase in the future. Our sustainable solution to control the demand for water resources and the negative impact of irrigation on the environment is smart irrigation because a smart irrigation system reduces water consumption without affecting crop yields (Mason et al. 2019). Each crop has specific water requirements, so plants should only be provided the amount of water needed to maximize yield (Jamal et al. 2017). Plants that require little water are commonly referred to as drought-tolerant. They are able to grow under hot, dry conditions with very little water. In most cases, drought-tolerant plants are hand-watered because they require adequate water at seeding and during the growing season.

Plants need a certain amount of water to grow perfectly. If the water is not distributed according to the requirements, large water losses will occur. As a result, less area will be irrigated with a sufficient amount of water. Due to seepage from canals and over-irrigation, not only is a large amount of irrigation water loss, but it also leads to waterlogging. Farmers’ lack of knowledge about actual water needs is also a major obstacle. It is an undeniable fact that climatic parameters have a significant impact on crop and irrigation water requirements. Climatic conditions such as evapotranspiration and uneven rainfall distribution, soil fertility, and soil properties have a significant impact on crop water requirements (CWR) and consequently on the development of the country (Tellioglu & Konandreas 2017).

As an agricultural country, Pakistan is highly dependent on irrigation due to insufficient rainfall on agricultural lands in Pakistan. In the list of the world's largest sources of irrigation, Pakistan's irrigation system occupies a top position. It provides water to about 18 million hectares of arable land (Yasmeen 2021). Moreover, agriculture is the main source of income for about 72% of Pakistan's population. However, increasing demand for freshwater and conveyance losses from irrigation systems are likely to affect the water supply to agriculture.

In Pakistan, including the Hyderabad district, farmers usually over-irrigate their lands because they do not have sufficient knowledge of CWR and assume that more water will produce a higher yield. An appropriate irrigation strategy can reduce the negative effects of over-irrigation; on the other hand, a balance can be maintained between crop water demand and available water. Modeling the water requirements of irrigated agriculture as an adaptation to appropriate irrigation management is the need of the hour. It not only improves the understanding of the current water use but also facilitates the search for sustainable development paths for the future.

CLIMWAT is a climatic database that works with the computer application CROPWAT to calculate crop water requirements, irrigation water requirements (IWR), and irrigation scheduling for a variety of crops at various climatological stations across the world. CLIMWAT 2.0 for CROPWAT is a joint publication of the Water Development and Management Unit and the Climate Change and Bioenergy Unit of FAO. If local climatic data are not available, these can be obtained from CLIMWAT for over 5,000 stations in the world. CLIMWAT provides long-term monthly average values of seven climatic parameters, such as average daily maximum, minimum temperature, average relative humidity, average wind speed, average sunshine hours, average solar radiation, monthly rainfall, and effective rainfall (FAO 2018).

CROPWAT 8.0 for Windows is a computer program for calculating crop water requirements, and irrigation requirements based on soil, climate, and crop data. In addition, the program allows the development of irrigation schedules for different farming conditions and the calculation of water demand for different cropping patterns. CROPWAT can also be used to evaluate farmers’ irrigation practices and estimate crop performance under both rainfed and irrigated conditions (Feng et al. 2007).

Various researchers such as Solangi et al. (2022); Gabr & Fattouh (2021); Gebremariam et al. (2021); Akinbile (2020); Chaali et al. (2020); Moseki et al. (2019); Ewaid et al. (2019) have applied the CROPWAT model worldwide to efficiently investigate the CWR, IWR, as well as irrigation scheduling. The CROPWAT model is preferred in the determination of the reference evapotranspiration (ETo), as it is reported to deliver very reliable values on actual crop water use data worldwide (Solangi et al. 2022). Therefore, the present study was carried out to model the CWR, IWR, and irrigation scheduling for major crops grown in the Hyderabad district of Pakistan using the CROPWAT model based on climatic, crop, and soil data.

Description of the study area

The study area (Hyderabad district) was established in 1768 and is located at a latitude of 25°23′45.6″N and a longitude of 68°21′28.08″E (Figure 1). Geographically, Hyderabad is the second largest city of Pakistan's Sindh province with an area of about 2,500 km2 and a population of about 1,919,053. It is located on the east bank of the Indus River. The geographical location of the city makes it an important railroad and road junction in the province. It is a nationwide center for the production of cotton and bananas. It is also known for the cultivation of sugarcane, cotton, wheat, rice, mango, etc. Figure 2 provides some pictures of the croplands of the study area. Climatically, Hyderabad district falls in a tropical and semi-tropical region with maximum and minimum temperatures ranging from 49.5 to 0 °C. From a hydrological point of view, the study area belongs to arid and semi-arid regions with brackish and saline groundwater. Western disturbances, dust storms, southeast monsoons, and continental air are the main factors affecting the weather in the study area.
Figure 1

GIS map of the study area (Hyderabad district).

Figure 1

GIS map of the study area (Hyderabad district).

Close modal
Figure 2

Pictures of croplands of the study area.

Figure 2

Pictures of croplands of the study area.

Close modal

Input data required for calculation of CWR, IWR, and irrigation scheduling

Three types of data are required to use the CROPWAT software, namely climate data, soil data, and crop data. For this study, climate data were obtained from the websites of NASA, the FAO software of CLIMWAT (FAO 2018), and the World Weather Online. Climate data include maximum temperature, minimum temperature, relative humidity, wind speed, and sunshine hours. Table 1 shows the minimum and maximum temperatures in the study area.

Table 1

Minimum and maximum temperatures in the study area

YearJanFebMarAprilMayJuneJulyAugSeptOctNovDec
Minimum temperature (°C) 
2017 9.31 13.85 17.32 24.11 27.79 29.77 29.2 27.36 25.45 23.15 16.27 11.13 
2018 11.8 12.29 19.65 23.79 27.46 29.35 29.85 28.4 25.46 22.31 16.33 14.23 
2019 9.99 12.33 18.32 23.41 28.49 30.11 29.25 28.48 25.77 22.33 16.09 10.07 
2020 11 14.6 19.42 24.64 27.32 28.95 29.31 27.91 25.33 22.08 18.18 11.22 
2021 10.6 10.51 16.67 24.03 26.71 29.97 29.62 27.36 27.3 22.45 16.22 10.43 
Avg. 10.5422.35 12.72 18.28 24.00 27.55 29.63 29.45 27.90 25.86 22.46 16.62 11.42 
Maximum temperature (°C) 
2017 25.3 30.47 33.69 41.79 45.64 43.65 42.02 41.35 41.25 30.81 31.89 27.29 
2018 27.4 30.46 35.84 40.8 45.73 45.53 43.02 40.43 41.7 32.63 33.69 30.4 
2019 25.0 30.07 35.84 42.74 45.51 43.76 41.07 42.18 41.38 33.99 31.97 26.62 
2020 27.4 31.01 37.46 42.23 45.2 44.44 43.56 42.14 40.95 34.56 33.45 26.87 
2021 25.3 26.23 32.52 41.51 43.73 45.55 43.15 39.02 40.06 27.21 29.23 25.27 
Avg. 26.08 29.65 35.07 41.81 45.16 44.49 42.56 41.02 41.07 31.84 32.05 27.29 
YearJanFebMarAprilMayJuneJulyAugSeptOctNovDec
Minimum temperature (°C) 
2017 9.31 13.85 17.32 24.11 27.79 29.77 29.2 27.36 25.45 23.15 16.27 11.13 
2018 11.8 12.29 19.65 23.79 27.46 29.35 29.85 28.4 25.46 22.31 16.33 14.23 
2019 9.99 12.33 18.32 23.41 28.49 30.11 29.25 28.48 25.77 22.33 16.09 10.07 
2020 11 14.6 19.42 24.64 27.32 28.95 29.31 27.91 25.33 22.08 18.18 11.22 
2021 10.6 10.51 16.67 24.03 26.71 29.97 29.62 27.36 27.3 22.45 16.22 10.43 
Avg. 10.5422.35 12.72 18.28 24.00 27.55 29.63 29.45 27.90 25.86 22.46 16.62 11.42 
Maximum temperature (°C) 
2017 25.3 30.47 33.69 41.79 45.64 43.65 42.02 41.35 41.25 30.81 31.89 27.29 
2018 27.4 30.46 35.84 40.8 45.73 45.53 43.02 40.43 41.7 32.63 33.69 30.4 
2019 25.0 30.07 35.84 42.74 45.51 43.76 41.07 42.18 41.38 33.99 31.97 26.62 
2020 27.4 31.01 37.46 42.23 45.2 44.44 43.56 42.14 40.95 34.56 33.45 26.87 
2021 25.3 26.23 32.52 41.51 43.73 45.55 43.15 39.02 40.06 27.21 29.23 25.27 
Avg. 26.08 29.65 35.07 41.81 45.16 44.49 42.56 41.02 41.07 31.84 32.05 27.29 

Air humidity, sunshine hours, wind speed, and precipitation

Table 2 describes the air humidity, sunshine hours, wind speed, and precipitation in the study area. The study area is generally not characterized by high humidity. The maximum average humidity is 45–55% and the minimum average humidity is 29–35%. The precipitation pattern over the study area shows maximum precipitation during the dry summer period, June to September, with low average precipitation of 100–130 mm.

Table 2

Air humidity and sunshine hours

MonthJanFebMarAprMayJunJulAugSepOctNovDec
Average (%) 52 45.6 37.9 29.6 30.3 40.7 50.5 55.8 53 43.7 44.6 50.5 
Hours 7.3 6.9 7.2 8.1 8.2 7.7 7.9 8.4 8.8 8.6 7.9 
Wind speed 
Max 3.65 4.01 4.52 5.52 6.76 7.85 8.16 6.78 5.70 3.83 3.57 3.58 
Min 1.01 1.05 1.2 1.32 2.01 3.69 4.24 3.20 2.51 1.09 1.02 1.1 
Average 2.33 2.53 2.86 3.42 4.39 5.77 6.20 4.99 4.10 2.46 2.3 2.43 
Precipitation (mm) 
Precipitation (mm) 2.5 2.5 2.1 4.6 2.7 5.6 27 51.3 33 2.6 0.4 
MonthJanFebMarAprMayJunJulAugSepOctNovDec
Average (%) 52 45.6 37.9 29.6 30.3 40.7 50.5 55.8 53 43.7 44.6 50.5 
Hours 7.3 6.9 7.2 8.1 8.2 7.7 7.9 8.4 8.8 8.6 7.9 
Wind speed 
Max 3.65 4.01 4.52 5.52 6.76 7.85 8.16 6.78 5.70 3.83 3.57 3.58 
Min 1.01 1.05 1.2 1.32 2.01 3.69 4.24 3.20 2.51 1.09 1.02 1.1 
Average 2.33 2.53 2.86 3.42 4.39 5.77 6.20 4.99 4.10 2.46 2.3 2.43 
Precipitation (mm) 
Precipitation (mm) 2.5 2.5 2.1 4.6 2.7 5.6 27 51.3 33 2.6 0.4 

Crop and soil data

The main crops grown in the study area are wheat, cotton, sugarcane, bananas, rice, etc. The timing of sowing and harvesting of these crops is described in Table 3. However, the soil characteristics used in this study are the medium soil (clay) characteristics as shown in Figure 3.
Table 3

Dates of sowing and harvesting of the crops (Solangi et al. 2022)

S. No.CropSowing dateHarvesting date
Wheat 01/11 10/03 
Cotton 15/04 26/10 
Sugarcane 15/02 14/02 
Banana 01/03 24/01 
S. No.CropSowing dateHarvesting date
Wheat 01/11 10/03 
Cotton 15/04 26/10 
Sugarcane 15/02 14/02 
Banana 01/03 24/01 
Table 4

IWR for the wheat crop

MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.3 1.52 1.5 0.1 1.5 
Nov Init 0.3 1.3 13 0.7 12.3 
Nov Init 0.3 1.22 12.2 0.7 11.6 
Dec Deve 0.3 1.17 11.7 0.7 11 
Dec Deve 0.49 1.75 17.5 0.7 16.8 
Dec Deve 0.79 2.85 31.3 0.6 30.8 
Jan Mid 1.09 3.93 39.3 0.3 38.9 
Jan Mid 1.17 4.23 42.3 0.2 42.2 
Jan Mid 1.17 4.55 50.1 0.6 49.5 
Feb Mid 1.17 4.79 47.9 46.9 
Feb Late 1.15 50 1.4 48.6 
Feb Late 0.95 4.79 38.3 1.5 36.8 
Mar Late 0.69 3.98 39.8 1.5 38.2 
Mar Late 0.42 2.67 24 1.5 22.3 
Total     418.9mm/season 11.3mm/season 407.6 mm/season 
MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.3 1.52 1.5 0.1 1.5 
Nov Init 0.3 1.3 13 0.7 12.3 
Nov Init 0.3 1.22 12.2 0.7 11.6 
Dec Deve 0.3 1.17 11.7 0.7 11 
Dec Deve 0.49 1.75 17.5 0.7 16.8 
Dec Deve 0.79 2.85 31.3 0.6 30.8 
Jan Mid 1.09 3.93 39.3 0.3 38.9 
Jan Mid 1.17 4.23 42.3 0.2 42.2 
Jan Mid 1.17 4.55 50.1 0.6 49.5 
Feb Mid 1.17 4.79 47.9 46.9 
Feb Late 1.15 50 1.4 48.6 
Feb Late 0.95 4.79 38.3 1.5 36.8 
Mar Late 0.69 3.98 39.8 1.5 38.2 
Mar Late 0.42 2.67 24 1.5 22.3 
Total     418.9mm/season 11.3mm/season 407.6 mm/season 
Figure 3

Reference evapotranspiration in the study area.

Figure 3

Reference evapotranspiration in the study area.

Close modal

Reference evapotranspiration and effective rainfall

The reference evapotranspiration is the rate of evapotranspiration (ET) from a hypothetical crop with a height, albedo, and fixed canopy resistance, respectively (Allen et al. 1998). Whereas the fraction of rainfall that is stored in the soil profile and helps in the growth of crops is effective rainfall (Peff).

The CWR and IWR

The amount of water corresponding to the loss of water from a cultivated field due to evapotranspiration is called the CWR. It is expressed by the rate of ET in mm/day. The IWR is the depth of water required to meet crop water needs in excess of effective rainfall when a disease-free crop is grown in large fields under nonrestrictive soil and soil water conditions with adequate fertility (Allen et al. 2006). The IWR is higher than CWR when agriculture is completely dependent on irrigation. However, when agriculture is completely dependent on irrigation and rainfall, the IWR is slightly lower than the CWR because the excess water is provided by rainfall. It can be calculated by Equation (1).
(1)

Irrigation scheduling

The proper amount of water for irrigation and the proper timing of irrigation are determined by irrigation scheduling. Different agronomic techniques and irrigation scheduling under diverse geographical and climatic conditions have a big impact on getting the optimum yield (Mehrabi & Sepaskhah 2018; Ahmadi et al. 2022; Solgi et al. 2022). Irrigation scheduling under different management conditions and water supply schedules is developed after calculating ETo, CWR, IWR using the CROPWAT model (Allen et al. 2005). The data entered into the CROPWAT and CLIMWAT software, such as crop type, cultivation date, and soil type medium (clay), included the meteorological station of the country Pakistan in the Hyderabad district. Once all the data were entered into the software, it calculated the CWR, IWR, and irrigation scheduling for the major crops grown in the Hyderabad district.

Reference evapotranspiration (ETo) and effective rainfall (Peff)

The reference evapotranspiration (ETo) for the major cultivated crops; wheat, cotton, sugarcane, and banana, in the district, was calculated. The ETo was found maximum in the month of June and minimum in the month of January (Figure 3). It was high in summer due to the high temperature, and it decreased in winter due to the low temperature. Further, it was seen that an increase in radiation value brings an increase in the ETo value, thus, depicting direct relation. The differences in ETo values reflect the variation in weather parameters in the study area. The maximum and minimum value of Peff (Figure 4) was 54.2 mm in August and 1.0 mm in January, respectively. Furthermore, the results showed that the effective rainfall was the same as the total rainfall for all months except April, June, July, August, and September due to the high value of temperature and wind speed in the respective months.
Figure 4

Rainfall and effective rainfall in the study area.

Figure 4

Rainfall and effective rainfall in the study area.

Close modal

The CWR, effective rainfall, and IWR

The total CWR, effective rainfall, and IWR for different crops in various agro-ecological zones, obtained after the application of respective data of the study area in the CROPWAT model, are described in Tables 47. The CWR, effective rainfall, and IWR for studied crops such as wheat, cotton, and banana, for the entire crop season are summarized in Table 8. The total CWR for the entire growing season for sugarcane, banana, cotton, and wheat were found to be 3,127.0; 2,012.3; 1,073.5; and 418.9 mm, respectively. However, the IWR for sugarcane, banana, cotton, and wheat for the entire growing season was found to be 2,964.0; 1,966.7; 1,052.7; and 407.6 mm, respectively. Settia et al. (2022) reported that rainfall is a major input for various water management and hydrological studies. However, the proportion of rainfall (effective rainfall) was 163.0; 45.6; 20.8; and 11.3 mm during the growing season of sugarcane, banana, cotton, and wheat, respectively. The results showed that the water requirement of all the selected crops in the study area was higher in the dry season than in the wet season, indicating that the crops grown in the dry season require more water than those grown in the wet season and also absorb a large amount of water due to the hot climate of the study area (FAO 2019). This is consistent with the FAO (2019) report, which states that crops grown in the rainy season require less water than those grown in the development and growth phases and that crops in the growth phase also require a large amount of water due to the high reference value of evapotranspiration in the months of the growth phase and require the more water as compared to the other three phases.

Table 5

IWR for the cotton crop

MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.35 1.78 1.8 0.1 1.8 
Nov Init 0.35 1.51 15.1 0.7 14.5 
Nov Init 0.35 1.43 14.3 0.7 13.6 
Dec Deve 0.35 1.36 13.6 0.7 12.9 
Dec Deve 0.46 1.66 16.6 0.7 16 
Dec Deve 0.65 2.33 25.7 0.6 25.1 
Jan Deve 0.83 3.01 30.1 0.3 29.8 
Jan Deve 1.01 3.66 36.6 0.2 36.4 
Jan Mid 1.19 4.62 50.8 0.6 50.2 
Feb Mid 1.23 5.04 50.4 49.4 
Feb Mid 1.23 5.34 53.4 1.4 52 
Feb Mid 1.23 6.19 49.5 1.5 48 
Mar Mid 1.23 7.08 70.8 1.5 69.3 
Mar Mid 1.23 7.89 78.9 1.7 77.2 
Mar Late 1.23 8.7 95.7 1.8 93.9 
Apr Late 1.16 8.97 89.7 87.7 
Apr Late 1.06 8.91 89.1 2.1 87 
Apr Late 0.96 8.95 89.5 1.8 87.8 
May Late 0.86 9.04 90.4 0.9 89.5 
May Late 0.76 8.79 87.9 0.4 87.5 
May Late 0.69 7.85 23.5 0.5 22.6 
Total     1,073.5 mm/season 20.8 mm/season 1,052.7 mm/season 
MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.35 1.78 1.8 0.1 1.8 
Nov Init 0.35 1.51 15.1 0.7 14.5 
Nov Init 0.35 1.43 14.3 0.7 13.6 
Dec Deve 0.35 1.36 13.6 0.7 12.9 
Dec Deve 0.46 1.66 16.6 0.7 16 
Dec Deve 0.65 2.33 25.7 0.6 25.1 
Jan Deve 0.83 3.01 30.1 0.3 29.8 
Jan Deve 1.01 3.66 36.6 0.2 36.4 
Jan Mid 1.19 4.62 50.8 0.6 50.2 
Feb Mid 1.23 5.04 50.4 49.4 
Feb Mid 1.23 5.34 53.4 1.4 52 
Feb Mid 1.23 6.19 49.5 1.5 48 
Mar Mid 1.23 7.08 70.8 1.5 69.3 
Mar Mid 1.23 7.89 78.9 1.7 77.2 
Mar Late 1.23 8.7 95.7 1.8 93.9 
Apr Late 1.16 8.97 89.7 87.7 
Apr Late 1.06 8.91 89.1 2.1 87 
Apr Late 0.96 8.95 89.5 1.8 87.8 
May Late 0.86 9.04 90.4 0.9 89.5 
May Late 0.76 8.79 87.9 0.4 87.5 
May Late 0.69 7.85 23.5 0.5 22.6 
Total     1,073.5 mm/season 20.8 mm/season 1,052.7 mm/season 
Table 6

IWR for the sugarcane crop

MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.85 4.34 4.3 0.1 38.5 
Nov Init 0.4 1.73 17.3 0.7 16.6 
Nov Init 0.4 1.63 16.3 0.7 15.6 
Dec Deve 0.4 1.55 15.5 0.7 14.8 
Dec Deve 0.5 1.8 18 0.7 17.4 
Dec Deve 0.67 2.42 26.6 0.6 26 
Jan Deve 0.84 3.03 30.3 0.3 30 
Jan Deve 3.62 36.2 0.2 36 
Jan Deve 1.17 4.55 50 0.6 49.5 
Feb Mid 1.33 5.44 54.4 53.4 
Feb Mid 1.36 5.9 59 1.4 57.6 
Feb Mid 1.36 6.84 54.7 1.5 53.3 
Mar Mid 1.36 7.83 78.3 1.5 76.7 
Mar Mid 1.36 8.72 87.2 1.7 85.6 
Mar Mid 1.36 9.64 106 1.8 104.3 
Apr Mid 1.36 10.56 105.6 103.6 
Apr Mid 1.36 11.48 114.8 2.1 112.6 
Apr Mid 1.36 12.73 127.3 1.8 125.5 
May Mid 1.36 14.34 143.4 0.9 142.5 
May Mid 1.36 15.77 157.7 0.4 157.3 
May Mid 1.36 15.39 169.2 1.8 167.5 
Jun Mid 1.36 14.91 149.1 2.5 146.6 
Jun Mid 1.36 14.75 147.5 3.3 144.2 
Jun Mid 1.36 13.92 139.2 7.9 131.3 
Jul Mid 1.36 12.95 129.5 13.9 115.5 
Jul Mid 1.36 12.11 121.1 18.6 102.5 
Jul Mid 1.36 11.78 129.6 18.4 111.1 
Aug Late 1.36 11.44 114.4 18.9 95.6 
Aug Late 1.31 10.68 106.8 19.8 87 
Aug Late 1.25 10.16 111.8 15.5 96.3 
Sep Late 1.19 9.72 97.2 10.1 87.1 
Sep Late 1.14 9.27 92.7 6.1 86.6 
Sep Late 1.08 8.24 82.4 4.2 78.2 
Oct Late 1.02 7.24 72.4 71.4 
Oct Late 0.97 6.36 63.6 63.6 
Oct Late 0.91 5.33 58.6 0.1 58.5 
Nov Late 0.85 4.34 39 0.5 38.5 
Total     3,127 mm/season 163 mm/season 2,964 mm/season 
MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 0.85 4.34 4.3 0.1 38.5 
Nov Init 0.4 1.73 17.3 0.7 16.6 
Nov Init 0.4 1.63 16.3 0.7 15.6 
Dec Deve 0.4 1.55 15.5 0.7 14.8 
Dec Deve 0.5 1.8 18 0.7 17.4 
Dec Deve 0.67 2.42 26.6 0.6 26 
Jan Deve 0.84 3.03 30.3 0.3 30 
Jan Deve 3.62 36.2 0.2 36 
Jan Deve 1.17 4.55 50 0.6 49.5 
Feb Mid 1.33 5.44 54.4 53.4 
Feb Mid 1.36 5.9 59 1.4 57.6 
Feb Mid 1.36 6.84 54.7 1.5 53.3 
Mar Mid 1.36 7.83 78.3 1.5 76.7 
Mar Mid 1.36 8.72 87.2 1.7 85.6 
Mar Mid 1.36 9.64 106 1.8 104.3 
Apr Mid 1.36 10.56 105.6 103.6 
Apr Mid 1.36 11.48 114.8 2.1 112.6 
Apr Mid 1.36 12.73 127.3 1.8 125.5 
May Mid 1.36 14.34 143.4 0.9 142.5 
May Mid 1.36 15.77 157.7 0.4 157.3 
May Mid 1.36 15.39 169.2 1.8 167.5 
Jun Mid 1.36 14.91 149.1 2.5 146.6 
Jun Mid 1.36 14.75 147.5 3.3 144.2 
Jun Mid 1.36 13.92 139.2 7.9 131.3 
Jul Mid 1.36 12.95 129.5 13.9 115.5 
Jul Mid 1.36 12.11 121.1 18.6 102.5 
Jul Mid 1.36 11.78 129.6 18.4 111.1 
Aug Late 1.36 11.44 114.4 18.9 95.6 
Aug Late 1.31 10.68 106.8 19.8 87 
Aug Late 1.25 10.16 111.8 15.5 96.3 
Sep Late 1.19 9.72 97.2 10.1 87.1 
Sep Late 1.14 9.27 92.7 6.1 86.6 
Sep Late 1.08 8.24 82.4 4.2 78.2 
Oct Late 1.02 7.24 72.4 71.4 
Oct Late 0.97 6.36 63.6 63.6 
Oct Late 0.91 5.33 58.6 0.1 58.5 
Nov Late 0.85 4.34 39 0.5 38.5 
Total     3,127 mm/season 163 mm/season 2,964 mm/season 
Table 7

IWR for the banana crop

MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 5.08 5.1 0.1 5.1 
Nov Init 4.33 43.3 0.7 42.6 
Nov Init 4.08 40.8 0.7 40.1 
Dec Init 3.86 38.6 0.7 38 
Dec Init 3.58 35.8 0.7 35.1 
Dec Init 3.59 39.5 0.6 39 
Jan Deve 3.61 36.1 0.3 35.8 
Jan Deve 1.04 3.75 37.5 0.2 37.4 
Jan Deve 1.09 4.24 46.7 0.6 46.1 
Feb Deve 1.14 4.68 46.8 45.8 
Feb Deve 1.19 5.17 51.7 1.4 50.4 
Feb Deve 1.24 6.22 49.8 1.5 48.3 
Mar Mid 1.28 7.38 73.8 1.5 72.2 
Mar Mid 1.3 8.34 83.4 1.7 81.7 
Mar Mid 1.3 9.21 101.4 1.8 99.6 
Apr Mid 1.3 10.09 100.9 98.9 
Apr Mid 1.3 10.97 109.7 2.1 107.6 
Apr Mid 1.3 12.16 121.6 1.8 119.9 
May Mid 1.3 13.71 137.1 0.9 136.1 
May Mid 1.3 15.08 150.8 0.4 150.4 
May Late 1.3 14.7 161.7 1.8 159.9 
Jun Late 1.3 14.21 142.1 2.5 139.6 
Jun Late 1.29 14.03 140.3 3.3 137 
Jun Late 1.29 13.21 132.1 7.9 124.2 
Jul Late 1.29 12.27 85.9 9.7 71.9 
Total     20,12.3 mm/season 45.6 mm/season 1,966.7 mm/season 
MonthDecadeStageKc coeff.CWR (mm/day)CWR (mm/dec)Eff rain (mm/dec)IWR (mm/dec)
Nov Init 5.08 5.1 0.1 5.1 
Nov Init 4.33 43.3 0.7 42.6 
Nov Init 4.08 40.8 0.7 40.1 
Dec Init 3.86 38.6 0.7 38 
Dec Init 3.58 35.8 0.7 35.1 
Dec Init 3.59 39.5 0.6 39 
Jan Deve 3.61 36.1 0.3 35.8 
Jan Deve 1.04 3.75 37.5 0.2 37.4 
Jan Deve 1.09 4.24 46.7 0.6 46.1 
Feb Deve 1.14 4.68 46.8 45.8 
Feb Deve 1.19 5.17 51.7 1.4 50.4 
Feb Deve 1.24 6.22 49.8 1.5 48.3 
Mar Mid 1.28 7.38 73.8 1.5 72.2 
Mar Mid 1.3 8.34 83.4 1.7 81.7 
Mar Mid 1.3 9.21 101.4 1.8 99.6 
Apr Mid 1.3 10.09 100.9 98.9 
Apr Mid 1.3 10.97 109.7 2.1 107.6 
Apr Mid 1.3 12.16 121.6 1.8 119.9 
May Mid 1.3 13.71 137.1 0.9 136.1 
May Mid 1.3 15.08 150.8 0.4 150.4 
May Late 1.3 14.7 161.7 1.8 159.9 
Jun Late 1.3 14.21 142.1 2.5 139.6 
Jun Late 1.29 14.03 140.3 3.3 137 
Jun Late 1.29 13.21 132.1 7.9 124.2 
Jul Late 1.29 12.27 85.9 9.7 71.9 
Total     20,12.3 mm/season 45.6 mm/season 1,966.7 mm/season 
Table 8

Summary of CWR, contribution of rainfall, and IWR for various studied crops

S. No.CropCWR (mm/crop season)IWR (mm/crop season)Contribution of rainfall (mm)
Wheat 418.9 11.4 407.6 
Cotton 1,073.5 20.8 1,052.7 
Banana 2,012.3 45.6 1,966.7 
Sugar cane 3,127.0 163.0 2,964.0 
S. No.CropCWR (mm/crop season)IWR (mm/crop season)Contribution of rainfall (mm)
Wheat 418.9 11.4 407.6 
Cotton 1,073.5 20.8 1,052.7 
Banana 2,012.3 45.6 1,966.7 
Sugar cane 3,127.0 163.0 2,964.0 

After analyzing the results obtained with the CROPWAT model, it was found that the crops with a longer growing period such as sugarcane and bananas, which occupy almost all the months of the year, consume abundant water. On the other hand, crops with a shorter growing season required less water for irrigation. The increased irrigation demand during the dry months can be explained by the drought and the resulting low relative humidity due to the lack of rain combined with high temperatures that led to increased evapotranspiration. In addition, the water demand of agriculture is highest during the hottest period with the highest temperatures, resulting in high evapotranspiration and a decrease in soil moisture (Zhong et al. 2014). Throughout the Hyderabad district, water losses from irrigation systems are significant, as water is generally transported to farmers’ fields through very poorly maintained earthen distribution systems, which experience significant water losses.

The results of a study conducted by Khan et al. (2021) to determine the crop water requirements for wheat and cotton in Sudan are comparable to those for wheat and cotton in the current study. The comparability of the outcomes supports our conclusion. Additionally, the predicted IWR for wheat in this study is comparable to recent studies done for Peshawar by Khan et al. (2019). Additionally, the results of the CWR, IWR for wheat, cotton, banana, and sugarcane of the Nawabshah district of Pakistan reported by Solangi et al. (2022) are consistent with recent research.

Irrigation scheduling

Irrigation scheduling is a simple tool to determine how much water to deliver to crops and when. Each crop has several stages, namely the initial stage, the developmental stage, the middle stage, and the late stage. At each stage, the irrigation requirement is different, so irrigation must be properly planned for the optimal use of water (Solangi et al. 2022).

In this study, it was found that the irrigation requirement for each crop was lower in the early stage and then increased in the developmental stage. In addition, it was approximately constant, and, with the exception of bananas, it was highest in the middle phase, while it decreased in the late phase due to the fact that the land must be dry to facilitate harvesting.

Knowledge of irrigation improves irrigation management in the field, which includes controlling the amount, timing, and rate of irrigation in an efficient and planned manner. Tables 912 and Figures 58 illustrate irrigation schedules for wheat, cotton, sugarcane, and banana crops.
Table 9

Irrigation schedule for the wheat crop

DateDayStageDepl. (%)Net irrigationGross irrigation (mm)
15 Nov 24 Init 55 36.6 52.3 
13 Dec 52 Dev 56 60.6 86.6 
30 Dec 69 Mid 55 66.3 94.7 
15 Jan 85 Mid 56 66.9 95.6 
31 Jan 101 End 59 70.3 100.4 
01 Mar End End 70   
Total    300.7 429.6 
DateDayStageDepl. (%)Net irrigationGross irrigation (mm)
15 Nov 24 Init 55 36.6 52.3 
13 Dec 52 Dev 56 60.6 86.6 
30 Dec 69 Mid 55 66.3 94.7 
15 Jan 85 Mid 56 66.9 95.6 
31 Jan 101 End 59 70.3 100.4 
01 Mar End End 70   
Total    300.7 429.6 
Table 10

Irrigation schedule for the cotton crop

DayDateStageNet irrigationGross irrigation (mm)
11 Aug 36 Dev 52.3 74.8 
31 Aug 56 Dev 71.2 101.8 
12 Sept 68 Dev 80.6 115.2 
23 Sept 79 Dev 93.2 133.1 
4 Oct 90 Mid 97.2 138.8 
15 Oct 101 Mid 92.0 131.4 
28 Oct 114 Mid 97.8 139.7 
12 Nov 129 Mid 94.0 134.3 
2 Dec 149 End 98.8 141.1 
8 Jan 186 End 122.2 174.6 
17 Jan End End   
Total   828.1 1,284.8 
DayDateStageNet irrigationGross irrigation (mm)
11 Aug 36 Dev 52.3 74.8 
31 Aug 56 Dev 71.2 101.8 
12 Sept 68 Dev 80.6 115.2 
23 Sept 79 Dev 93.2 133.1 
4 Oct 90 Mid 97.2 138.8 
15 Oct 101 Mid 92.0 131.4 
28 Oct 114 Mid 97.8 139.7 
12 Nov 129 Mid 94.0 134.3 
2 Dec 149 End 98.8 141.1 
8 Jan 186 End 122.2 174.6 
17 Jan End End   
Total   828.1 1,284.8 
Table 11

Irrigation schedule for the sugarcane crop

DateDayStageDepl. (%)Net irrigationGross irrigation (mm)
16 Aug 41 Dev 65 98.1 140.2 
6 Sept 62 Dev 68 101.3 144.7 
20 Sep 76 Dev 70 104.3 149.0 
2 Oct 88 Dev 68 101.9 145.6 
14 Oct 100 Mid 70 105.0 150.0 
27 Oct 113 Mid 69 102.8 146.9 
30 Nov 147 Mid 67 100.7 143.9 
21 Dec 168 Mid 66 98.5 140.8 
12 Jan 190 Mid 67 100.5 143.6 
2 Feb 211 Mid 68 101.7 145.3 
21 Feb 230 Mid 68 102.0 145.7 
8 Mar 245 Mid 67 100.9 144.2 
21 Mar 258 Mid 69 104.2 148.8 
1 Apr 269 Mid 66 98.7 141.0 
12 Apr 280 End 71 107.0 152.9 
22 Apr 290 End 69 103.7 148.1 
1 May 299 End 66 99.7 142.5 
10 May 308 End 72 107.5 153.5 
18 May 316 End 68 101.8 145.4 
27 May 325 End 72 107.5 153.6 
5 Jun 334 End 68 102.3 146.1 
15 Jun 344 End 70 105.6 150.8 
26 Jun 355 End 70 104.3 149.0 
6 Jul End End 49   
Total    2,360 3,371.6 
DateDayStageDepl. (%)Net irrigationGross irrigation (mm)
16 Aug 41 Dev 65 98.1 140.2 
6 Sept 62 Dev 68 101.3 144.7 
20 Sep 76 Dev 70 104.3 149.0 
2 Oct 88 Dev 68 101.9 145.6 
14 Oct 100 Mid 70 105.0 150.0 
27 Oct 113 Mid 69 102.8 146.9 
30 Nov 147 Mid 67 100.7 143.9 
21 Dec 168 Mid 66 98.5 140.8 
12 Jan 190 Mid 67 100.5 143.6 
2 Feb 211 Mid 68 101.7 145.3 
21 Feb 230 Mid 68 102.0 145.7 
8 Mar 245 Mid 67 100.9 144.2 
21 Mar 258 Mid 69 104.2 148.8 
1 Apr 269 Mid 66 98.7 141.0 
12 Apr 280 End 71 107.0 152.9 
22 Apr 290 End 69 103.7 148.1 
1 May 299 End 66 99.7 142.5 
10 May 308 End 72 107.5 153.5 
18 May 316 End 68 101.8 145.4 
27 May 325 End 72 107.5 153.6 
5 Jun 334 End 68 102.3 146.1 
15 Jun 344 End 70 105.6 150.8 
26 Jun 355 End 70 104.3 149.0 
6 Jul End End 49   
Total    2,360 3,371.6 
Table 12

Irrigation schedule for the banana crop

DateDayStageDepl. (%)Net irrigation (mm)Gross irrigation (mm)
10 Jul Init 61 19.0 27.2 
16 Jul 10 Init 55 17.8 25.4 
21 Jul 15 Init 66 22.1 31.6 
29 Jul 23 Init 57 20.1 28.8 
6 Aug 31 Init 63 23.5 33.6 
2 Aug 37 Init 65 25.0 35.8 
21 Aug 46 Init 63 25.7 36.7 
30 Aug 55 Init 56 24.0 33.6 
8 Sep 64 Init 58 25.9 35.8 
16 Sep 72 Init 63 29.6 36.7 
24 Sep 80 Init 60 29.5 34.3 
2 Oct 88 Init 55 28.0 37.1 
11 Oct 97 Dev 60 31.8 42.2 
20 Oct 106 Dev 59 32.3 42.1 
29 Oct 115 Dev 54 31.0 40.0 
8 Nov 125 Dev 54 32.0 45.5 
20 Nov 137 Dev 56 34.9 46.2 
2 Dec 149 Dev 53 34.3 44.2 
15 Dec 162 Dev 54 36.9 45.8 
28 Dec 175 Dev 53 37.5 49.9 
9 Jan 187 Dev 50 37.3 49.0 
21 Jan 199 Dev 52 40.1 52.7 
1 Feb 210 Dev 52 41.1 53.5 
11 Feb 220 Dev 50 40.7 53.3 
20 Feb 229 Dev 47 39.5 57.3 
28 Feb 237 Dev 49 42.2 58.7 
7 Mar 244 Dev 50 43.6 58.1 
13 Mar 250 Dev 46 40.9 56.5 
25 Mar 256 Mid 49 43.8 60.2 
30 Mar 262 Mid 53 48.1 62.3 
4 Apr 267 Mid 45 40.7 58.4 
9 Apr 272 Mid 49 43.7 62.6 
14 Apr 282 Mid 49 44.5 68.7 
19 Apr 287 Mid 53 47.6 58.1 
23 Apr 291 Mid 54 48.4 62.4 
27 Apr 295 Mid 47 41.9 63.6 
1 May 299 Mid 48 43.0 68.0 
5 May 303 End 50 45.2 69.1 
9 May 307 End 54 48.9 59.9 
13 May 311 End 54 48.9 61.4 
17 May 315 End 58 52.6 64.6 
21 May 319 End 60 53.8 69.8 
25 May 323 End 60 51.4 69.8 
29 May 327 End 57 51.4 75.2 
1 Jun End End 29   
Total    1,640.2 2,225.7 
DateDayStageDepl. (%)Net irrigation (mm)Gross irrigation (mm)
10 Jul Init 61 19.0 27.2 
16 Jul 10 Init 55 17.8 25.4 
21 Jul 15 Init 66 22.1 31.6 
29 Jul 23 Init 57 20.1 28.8 
6 Aug 31 Init 63 23.5 33.6 
2 Aug 37 Init 65 25.0 35.8 
21 Aug 46 Init 63 25.7 36.7 
30 Aug 55 Init 56 24.0 33.6 
8 Sep 64 Init 58 25.9 35.8 
16 Sep 72 Init 63 29.6 36.7 
24 Sep 80 Init 60 29.5 34.3 
2 Oct 88 Init 55 28.0 37.1 
11 Oct 97 Dev 60 31.8 42.2 
20 Oct 106 Dev 59 32.3 42.1 
29 Oct 115 Dev 54 31.0 40.0 
8 Nov 125 Dev 54 32.0 45.5 
20 Nov 137 Dev 56 34.9 46.2 
2 Dec 149 Dev 53 34.3 44.2 
15 Dec 162 Dev 54 36.9 45.8 
28 Dec 175 Dev 53 37.5 49.9 
9 Jan 187 Dev 50 37.3 49.0 
21 Jan 199 Dev 52 40.1 52.7 
1 Feb 210 Dev 52 41.1 53.5 
11 Feb 220 Dev 50 40.7 53.3 
20 Feb 229 Dev 47 39.5 57.3 
28 Feb 237 Dev 49 42.2 58.7 
7 Mar 244 Dev 50 43.6 58.1 
13 Mar 250 Dev 46 40.9 56.5 
25 Mar 256 Mid 49 43.8 60.2 
30 Mar 262 Mid 53 48.1 62.3 
4 Apr 267 Mid 45 40.7 58.4 
9 Apr 272 Mid 49 43.7 62.6 
14 Apr 282 Mid 49 44.5 68.7 
19 Apr 287 Mid 53 47.6 58.1 
23 Apr 291 Mid 54 48.4 62.4 
27 Apr 295 Mid 47 41.9 63.6 
1 May 299 Mid 48 43.0 68.0 
5 May 303 End 50 45.2 69.1 
9 May 307 End 54 48.9 59.9 
13 May 311 End 54 48.9 61.4 
17 May 315 End 58 52.6 64.6 
21 May 319 End 60 53.8 69.8 
25 May 323 End 60 51.4 69.8 
29 May 327 End 57 51.4 75.2 
1 Jun End End 29   
Total    1,640.2 2,225.7 
Figure 5

Irrigation schedule for the wheat crop.

Figure 5

Irrigation schedule for the wheat crop.

Close modal
Figure 6

Irrigation schedule for the cotton crop.

Figure 6

Irrigation schedule for the cotton crop.

Close modal
Figure 7

Irrigation schedule for the sugarcane crop.

Figure 7

Irrigation schedule for the sugarcane crop.

Close modal
Figure 8

Irrigation schedule of the banana crop.

Figure 8

Irrigation schedule of the banana crop.

Close modal

Table 9 obtained by the CROPWAT model, describes the net irrigation for the wheat crop as 300.7 mm and the gross irrigation as 429.6 mm. While Table 10 shows the net irrigation for the cotton crop as 828.1 mm and the gross irrigation as 1,284.8 mm. However, Table 11 obtained by CROPWAT model, describes the net irrigation and gross irrigation for the sugarcane crop as 1,640.2 and 3,371.6 mm, respectively. Table 12 obtained by CROPWAT model, describes the net irrigation for the banana crop as 1,640.2 mm and the gross irrigation as 2,225.7 mm.

The analysis revealed that the total CWR for the entire growing season for sugarcane, banana, cotton, and wheat were 3,127.0; 2,012.3; 1,073.5; and 418.9 mm, respectively. However, the IWR for sugarcane, banana, cotton, and wheat for the entire growing season was found to be 2,964.0; 1,966.7; 1,052.7; and 407.6 mm, respectively. Whereas the proportion of effective rainfall was 163.0; 45.6; 20.8; and 11.3 mm during the growing season of sugarcane, banana, cotton, and wheat, respectively. For the crops that include a dry season in their life cycle, all except wheat were found to be high with an IWR of 401.7 mm/season due to some parameters affecting the reference evapotranspiration (ETo). In addition, an increase in the IWR value was observed for crops whose life cycle spans more, such as sugarcane with an IWR value of 3,094.5 mm/season. It was also found that rainfall significantly reduced the amount of IWR. During the dry season, CWR and IWR were higher due to high temperatures and low relative humidity, resulting in an increase in evapotranspiration. As for irrigation scheduling, the irrigation requirement for each crop was lower in the initial stage and then increased in the development stage. Moreover, it was approximately constant, and, with the exception of banana, it was highest in the middle phase, while it decreased in the late phase to facilitate harvesting. The study recommends the use of scientific tools such as CROPWAT and CLIMWAT to evaluate the CWR, IWR, and irrigation scheduling with a high degree of accuracy that farmers around the world, including Pakistan, readily accept. The present study will help to improve the monitoring of water resources and production. It would also help farmers, policymakers, and local farmers to make the best use of the extremely scarce resource of the country. In addition, engineers and planning agencies can use this study to design irrigation systems that are precisely matched to the water needed to be delivered to the fields.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Ahmadi
S. H. A.
,
Jorenush
M. H.
&
Nasab
S. B.
2022
Regional modeling of winter wheat yield and water productivity under water-saving irrigation scenarios
.
Journal of Water and Climate Change
13
(
10
),
3547
.
doi:10.2166/wcc.2022.170
.
Akinbile
C. O.
2020
Crop water requirements, biomass and grain yields estimation for upland rice using CROPWAT, AQUACROP and CERES simulation models
.
Agricultural Engineering International: CGR Journal
22
(
2
),
1
20
.
Allen
R. G.
,
Pereira
L. S.
,
Raes
D.
&
Smith
M.
1998
Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements
.
United Nations FAO, Irrigation and Drainage Paper 56, FAO
,
Rome
,
Italy
.
Allen
R. G.
,
Pereirm
L. S.
,
Smith
M.
,
Raes
D.
&
Wright
L. L.
2005
FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions
.
Journal of Irrigation and Drainage Engineering
13
(
1
),
2
13
.
Allen
R. G.
,
Pruitt
W. O.
,
Wright
J. L.
,
Howell
T. A.
,
Ventura
F.
,
Snyder
R.
,
Itenfisu
D.
,
Steduto
P.
,
Berengena
J.
,
Yrisarry
J. B.
,
Smith
M. A.
,
Pereira
L. S.
,
Raes
D.
,
Perrier
A.
,
Alves
I.
,
Walter
I.
&
Elliott
R.
2006
A recommendation on standardized surface resistance for hourly calculation of reference ETO by the FAO 56 monteith method
.
Agricultural Water Management
81
,
1
22
.
Chaali
N.
,
Ouazaa
S.
,
Jaramillo-Barrios
C. I.
,
Carrillo
C. A. A.
&
Pedraza
E. A. A.
2020
Edaphoclimatic characterization and crop water requirement of Arracacha (Arracacia xanthorrhiza Bancroft) roots in upland production areas
.
Scientia Horticulturae
272
,
109533
.
CROPWAT Software, FAO, Land and Water Division
.
2018
.
Available from: http://www.fao.org/landwater/databases-and-software/cropwat/en/ (accessed 20 August 2018)
.
Ewaid
S. H.
,
Abed
S. A.
&
Al-Ansari
N.
2019
Crop water requirements and irrigation schedules for some major crops in Southern Iraq
.
Water
11
(
4
),
756
.
https://doi.org/10.3390/w11040756
.
FAO
2019
Handbook on Climate Information for Farming Communities-What Farmers Need and What is Available
.
Food and Agriculture Organization of the United Nations
,
Rome Italy
.
Feng
Z.
,
Liu
D.
&
Zhang
Y.
2007
Water requirements and irrigation scheduling of spring maize using GIS and CROP model in Beijing-Tianjin-Hebei region
.
Chinese Geographical Science
17
,
56
63
.
https://doi.org/10.1007/s11769-007-0056-3
.
Gabr
M. E.
&
Fattouh
E. M.
2021
Assessment of irrigation management practices using FAO-CROPWAT 8, case studies: tina plain and east South El-Kantara, Sinai, Egypt
.
Ain Shams Engineering Journal
12
(
2
),
1623
1636
.
ISSN 2090-4479, https://doi.org/10.1016/j.asej.2020.09.017
.
Gebremariam
F. T.
,
Habtu
S.
,
Yazew
E.
&
Teklu
B.
2021
The water footprint of irrigation-supplemented cotton and mung-bean crops in Northern Ethiopia
.
Heliyon
7
(
4
),
e06822
.
ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2021.e06822
.
Jamal
Q. K.
,
Shanthasheela
M.
,
Sureshverma
R.
&
Vasanthapriya
S.
2017
Factors influencing the knowledge and adoption of sustainable sugarcane initiative (SSI) by the sugarcane farmers of Villupuram District
.
International Journal of Applied Research And Technology
2
(
2
),
106
112
.
https://doi.org./10.24163/iiaW2017/2(2Y106-112)
.
Khan
M. J.
,
Malik
A.
,
Rahman
M.
,
Afzaal
M.
&
Mulk
S.
2019
Assessment of crop water requirement for various crops in Peshawar, Pakistan using CROPWAT model
.
Irrigation and Drainage Systems
10
,
9
.
Mason
B.
,
Rufi-Salis
M.
,
Parada
F.
,
Gabarrell
X.
&
Gruden
C.
2019
Intelligent urban irrigation systems. saving water and maintaining crop yields
.
Agricultural Water Management
226
.
https://doi.org/10.1016/j.auwat.2019.105812
.
Moseki
O.
,
Murray-Hudson
M.
&
Kashe
K.
2019
Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: applying the CROPWAT model
.
Agricultural Water Management
225
,
105754
.
ISSN 0378-3774
.
Settia
S.
,
Yumnam
K.
,
Rathinasamy
M.
&
Agarwal
A.
2022
Assessment of satellite precipitation products at different time scales over a cyclone prone coastal river basin in India
.
Journal of Water and Climate Change
.
doi:10.2166/wcc.2022.166
.
Shiklomanov
I. A.
1997
Assessment of water resources and water availability in the world
. In:
Shiklomanov, I. A. (ed.)
Comprehensive Assessment of the Freshwater Resources of the World
.
Stockholm Environment Institute
,
Stockholm
.
Solangi
G. S.
,
Shah
S. A.
,
Alharbi
R. S.
,
Panhwar
S.
,
Keerio
H. A.
,
Kim
T.-W.
,
Memon
J. A.
&
Bughio
A. D.
2022
Investigation of irrigation water requirement for major crops in Pakistan using CROPWAT model based on climate data
.
Water
14
,
2578
.
Solgi
S.
,
Ahmadi
S. H.
,
Sepaskhah
A. R.
&
Edalat
M.
2022
Wheat yield modeling under water-saving irrigation and climatic scenarios in transition from surface to sprinkler irrigation systems
.
Journal of Hydrology
612
(
Part A
),
128053
.
Tellioglu
I.
&
Konandreas
P.
2017
Agricultural Policies, Trade, and Sustainable Development in Egypt
.
ICTSD and FAO
,
Egypt
.
United Nations Environment Programme (UNEP)
1999
Global Environmental Outlook 2000
.
Earthscan
,
London
.
Yasmeen
A.
2021
Irrigation System of Pakistan. World's Largest Source I Indus Basin of Pakistan
.
Zhong
S.
,
Zhang
W.
,
Lu
J.
&
Wei
C.
2014
Temporal variation of soil water and its influencing factors in hilly area of Chongqing, China
.
International Journal of Agricultural and Biological Engineering
7
(
4
),
47
59
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).