Water distribution networks (WDNs) are essential for modern cities, as effective design can reduce construction costs and ensure reliable service. As cities expand, optimizing these large networks becomes increasingly complex. In this work, we introduce a novel approach by combining simulated annealing (SA) with variable neighbourhood search (VNS) into a single heuristic algorithm for WDN optimization, marking the first use of the SA-VNS method in this context. Additionally, we apply Taguchi's design of experiments (DOE) to tune the parameters of the SA-VNS algorithm specifically for water networks. We tested our new algorithm on four standard benchmark networks and a real-world WDN, including a case study of a large city. Our results demonstrate that the SA-VNS algorithm outperforms existing methods in terms of cost, speed, and overall effectiveness, making this research a significant advancement in both heuristic methods and parameter-tuning techniques for WDN optimization.

  • The optimization of water distribution networks problem is investigated.

  • A hybrid SA-VNS solution approach is implemented to deal with this problem.

  • The Taguchi design of experiments is applied for SA-VNS parameters tuning.

  • Small, medium, and large benchmark instances are investigated to verify the solution approach.

  • A real case example is solved and analyzed using the proposed solution method.

Urban water consumption is rising globally, and water distribution network systems (WDNs) represent a significant portion of city infrastructure costs. The pipe distribution network of a water supply can constitute a major part of the project's capital cost. Numerous arrangements of pipe sizes within the network may exist to satisfy field requirements. Each arrangement results in a different project total cost. Therefore, attempts to obtain optimal solutions have involved hydraulic analysis of the network and the application of optimization techniques. The optimal solution aims to minimize the network's cost. Efficient WDN design is crucial for meeting demand and maintaining pressure while minimizing costs.

Several optimization models have been reported for the optimal design of water distribution systems. Two different optimization techniques are applied to solve these models: the deterministic optimization techniques (including linear, dynamic, and non-linear programming) and the stochastic optimization techniques such as Evolutionary algorithms (EAs). A deterministic approach for solving WDN typically involves using methods based on mathematical modeling and algorithmic techniques where the outcomes are entirely predictable and not influenced by random variables (El-Ghandour & Elbeltagi 2018). In contrast, a probabilistic approach for solving WDN incorporates uncertainty and randomness into the decision-making process. Unlike deterministic methods, probabilistic approaches recognize that certain parameters (e.g. water demand, pipe failures, pressure variations) are subject to variability, which is modeled and addressed through statistical or stochastic techniques.

EAs are fundamentally based on exploratory search and natural processes or even artificial intelligence. EAs, inspired by natural processes, have been widely applied for this purpose. Among these, genetic algorithms (GAs) were pioneering methods and have evolved into techniques such as NSGA-II for multi-objective optimization (El-Ghandour & Elbeltagi 2018).

Other notable algorithms include differential evolution (DE), shuffled complex evolution (SCE), particle swarm optimization (PSO), ant-colony optimization (ACO), harmony search (HS), and simulated annealing (SA). Each algorithm has unique strengths in addressing various optimization problems within WDNs (El-Ghandour & Elbeltagi 2018).

The latest research in the field of WDN optimization has been conducted by Sampaio Caradot Guilbert & Parez (2024). That study aims to employ a pipe deterioration model based on Markov chains, with transition matrices estimated from survival curves for different pipe cohorts. The proposed approach seeks to determine the appropriate levels of investment (CAPEX) and operational expenses (OPEX) levels in the coming decades. It was tested with real-world data from a sewer network in Sofia, Bulgaria, and the results show that it provides efficient long-term rehabilitation plans.

Despite these advancements, integrating variable neighborhood search (VNS) with other algorithms has shown promise but remains underexplored in WDN optimization. VNS is a framework for building heuristics based on systematic changes in neighborhoods, both in the descent phase, to find a local minimum, and in the perturbation phase, to emerge from the corresponding valley. A review of the literature revealed that no solution method exists that combines a heuristic algorithm with the VNS framework. This is because the VNS framework significantly improves the solutions (Hansen Mladenović & Moreno Pérez 2010). It is worth noting that the combination of SA and VNS for optimizing other problems has been used previously (Jandaghi Divsalar & Emami 2021), demonstrating improved solution quality and solving speed. However, this combination has not yet been applied to water network optimization. Furthermore, a review of the literature revealed that none of the presented heuristic algorithms have addressed the issue of parameter tuning.

As mentioned earlier, several heuristic approaches have been developed in the literature to optimize WDNs. Among these approaches, algorithms that combine variable neighborhood search (VNS) with different metaheuristic algorithms have garnered significant attention due to their promising results. However, VNS has not been applied to WDN optimization. Therefore, this study introduces a new approach that combines SA with variable neighborhood search (VNS), termed SA-VNS, incorporating an efficient local search for WDN optimization. Additionally, parameter tuning is employed to guide the solution process toward the optimal solution and reduce convergence time. The performance of this algorithm was compared with similar algorithms across different networks. Furthermore, the model's ability to address a real case study was investigated. The coupled hydraulic modeling and optimization procedure was used to assess the design for network extension. The results indicate that, as expected, improvements were observed in the cost function, convergence rate, and overall algorithm performance.

The layout of the water supply and distribution network is shown in Figure 1. As illustrated in the figure, water is supplied from the sources and distributed to consumers. In this layout, water reaches the consumers through the WDN, which consists of pipes with varying diameters and lengths. The point where each pipe connects to another pipe is referred to as a node.
Figure 1

Layout of the water supply and distribution network (Adedeji & Hamam 2020).

Figure 1

Layout of the water supply and distribution network (Adedeji & Hamam 2020).

Close modal
The design and rehabilitation of WDNs are formulated as a least-cost optimization problem with a known pipe layout, nodal demands, and minimum head requirements. The pipe diameter is considered as the problem decision variable (Kim & Mays 1994). Therefore, the objective function is defined as below:
(1)
where Np is the total number of pipes; Ci (Dk) is the cost of unit length of pipe (i) corresponding to diameter Dk; and Li is the length of pipe (i); and Nava is the total available diameters. Constraints are divided into design constraints (Equation (2)) and hydraulic constraints (Equation (3)) as below:
(2)
(3)
where Dmin and Dmax are the minimum and maximum allowable diameters; Di is the diameter of the pipe (i); Hjmin and Hjmax are the minimum and maximum allowable heads at node (j); Hj is the pressure head at node (j); and M is the total number of nodes. The optimization problem under study aims to minimize the objective function (Equation (1)) under the constraints (Equations (2) and (3)) for steady-state conditions. For the steady-state conditions, both the conservation of mass (Equation (4)) is considered as below:
(4)
where qin is the flow into the node; qout is the flow out of the node; and qe is the external demand at the node. The conservation of energy (Equation (5)) are considered as follows:
(5)
where hf is the pipe frictional head loss (Equation (6)); and Ep is the energy supplied by a pump.
(6)
where Cu is a constant equal to 4.725 for ES units and 10.67 for SI units; CHWi is the Hazen–Williams coefficient for the pipe (i); Li is the length of pipe (i); Di is the diameter of pipe (i); Qi is the discharge through pipe (i); and Np is the total number of pipes in the network.
Figures 2 and 3 depict the main structure and flowchart of the SA-VNS algorithm. An initial solution is generated using an adaptation of the random approach in this algorithm, and then the SA-VNS algorithm is applied to improve the initial result. The SA process starts with an initial temperature and continues until it reaches a minimum temperature. In this algorithm, ‘Tcost’ is the objective value of the relevant solution, and ‘rand’ is a random value between 0 and 1.
Figure 2

Main structure of SA-VNS.

Figure 2

Main structure of SA-VNS.

Close modal

The algorithm comprises a local search and a shaking phase, as indicated in Figure 2, both of which are detailed in the next sections. The SA-VNS algorithm is coded in C + +, and the EPANET C ++ toolkit is linked for evaluating hydraulic and steady-state constraints.

In Figure 3, the flowchart of the SA-VNS algorithm is presented. As shown in the figure, the algorithm starts by generating an initial solution and initializing its parameters. It then continues searching locally for better solutions until the stopping conditions are met. If a better solution is found during the local search, it replaces the current solution. Throughout the iterations, temperature reduction, a key aspect of the well-known SA algorithm, takes place.
Figure 3

Flowchart of SA-VNS algorithm.

Figure 3

Flowchart of SA-VNS algorithm.

Close modal

Initial solution

The initial solution was generated using a random structure. First, random diameters for the pipes were selected, and then the hydraulic constraints were evaluated. If the hydraulic constraints were satisfied, these random diameters were used as the starting solution for the SA-VNS algorithm.

Local search

Figure 4 shows the pseudocode for the proposed SA-VNS algorithm's local search function. In this designed local search, a new coefficient named γ was introduced, this coefficient determines the number of pipes selected for reducing the diameter of the current pipe size after descending sorting. N_Pipes represents the total number of pipes in the WDN. Several experiments were conducted, and it was found that the optimal reduction in the diameter of each pipe is three units.
Figure 4

Local-search's pseudocode in SA-VNS.

Figure 4

Local-search's pseudocode in SA-VNS.

Close modal

Shaking

In the shaking phase, a percentage (β) of the total number of pipes was selected, and a new random diameter was assigned to each pipe, ensuring that the hydraulic constraints were satisfied. The shaking percentage is a parameter of the algorithm, with a value between 0 and 1, and will be discussed in the next section.

Several experiments were conducted on the proposed algorithms. First, this section details the test instances and their creation process. Benchmarks from the literature were also performed. Next, the Taguchi design of experiments (DOE) method was used to tune the parameters of the proposed algorithm. The experimental results were then analysed to compare the performance of the SA-VNS approach on the benchmark instances. All experiments were conducted on a PC with a 2.4 GHz Core 2 Duo CPU, 6 GB RAM, and Windows 10. The SA-VNS algorithm was implemented in Visual C ++ using Visual Studio 2010, and the steady-state constraints were evaluated using the EPANET toolkit for C + +. Additionally, statistical analysis was performed with Minitab 18 for the Taguchi DOE.

Description of the literature benchmark tests

Two-loop network design

This network was previously studied in the literature. The benchmark, initially examined by Alperovits & Shamir (1977), involves optimizing a network with eight pipes, six nodes, and a constant head reservoir. The objective is to minimize costs while maintaining adequate pressure. This design was created for a two-loop network with eight pipes, six nodes, and one constant head reservoir. The schematic of this network is shown in Figure 5. The minimum allowable nodal pressure head is 30 m above the ground, and the network is fed by a constant reservoir with a head of 210 m. The pipes are all 1,000 m long, with an assumed Hazen–Williams coefficient of 130. Details on commercially available pipe sizes, costs, and nodal data can be found in Alperovits & Shamir (1977).
Figure 5

Schematic of the two-loop network.

Figure 5

Schematic of the two-loop network.

Close modal

New York network rehabilitation

A schematic of the New York City WDN is shown in Figure 6 (Schaake & Lai 1969). This network consists of 21 pipes, 20 nodes, and 1 constant head reservoir. Due to population growth and the aging of pipes, the pressure heads at some nodes have been found inadequate to meet increased demand. Therefore, the network needs to be rehabilitated to increase the pressure heads at those nodes. It should be noted that the rehabilitation involves constructing new pipes parallel to the existing ones. The network data, including pipe specifications, nodal requirements, potential pipe diameters for reinforcement, and associated costs, can be found in Schaake & Lai (1969). Additionally, the water level inside the elevated reservoir at node 1 was 91.5 m (300 ft).
Figure 6

Schematic of the New York network.

Figure 6

Schematic of the New York network.

Close modal

Three-loop network with pump

In this example, a network consisting of two reservoirs, 16 pipes, a pump, and a check valve, as illustrated in Figure 7 was considered. The input data for the network are provided in Moosavian & Lence (2019). The problem was solved using initial diameters of 450 mm for all pipes and reservoir heights of 40 and 50 m at nodes 2 and 12, respectively. The minimum and maximum allowable velocities are 0.1 and 3.0 m/s, respectively. Additionally, the minimum and maximum allowable pressure heads are 20 and 95 m, respectively.
Figure 7

Three-loop network with pump.

Figure 7

Three-loop network with pump.

Close modal

El-Mostakbal City

The suggested SA-VNS was tested on the El-Mostakbal City network in Egypt. This network was first studied by El-Ghandour & Elbeltagi (2018). It is considered an extension of the distribution network of the city of Ismailia. The network contains 33 nodes and 44 pipes, as shown in Figure 8. All network data, including pipe specifications, nodal demands, available pipe diameters, and associated costs, were provided by El-Ghandour & Elbeltagi (2018). They introduced five models based on EAs and compared them for optimizing the design and rehabilitation of WDNs. In this paper, the proposed SA-VNS algorithm was applied to El-Mostakbal City to compare its performance with the five algorithms proposed by them.
Figure 8

El-Mostakbal Network.

Figure 8

El-Mostakbal Network.

Close modal

Parameters tuning and sensitivity analysis

Several parameters were employed in the architecture of the proposed SA-VNS algorithm that must be initialized before running the main experiments, as discussed in Section 3. Fine-tuning these parameters may have a significant impact on the algorithm's performance in terms of both the objective value and the runtime (number of evaluated functions). The parameters of the SA-VNS algorithm include the initial temperature (Tmax), the temperature decreasing coefficient (α), the shaking percentage (β), the maximum number of iterations, and the percentage of sorted pipes where the diameter decreases by 3 units (γ). In this section, the Taguchi design of the experiment method is used to design the necessary experiments to select the optimal value for each of these parameters among various predetermined levels. The Taguchi technique works by first performing some tests based on these specified parameter values, then using the outcomes of all experiments as the parameters. After that, this method employs a loss function to find the optimal combination of parameters. The approach applied to analyse the tests in this research is the signal-to-noise (S/N) ratio method. This approach expresses the amount of dispersion around a particular value, which means how results vary across different experiments. In Tables 1 and 2, the tuning parameters and the levels considered in the tests for small networks (fewer than 30 nodes) and large networks (more than 30 nodes) are presented. For the SA_VNS algorithm, five values for each parameter were considered.

Table 1

Taguchi parameter tuning at various levels

AlgorithmParametersLevels
SA_VNS Tmax 20, 50, 80, 100, 150 
Tmin 0.1, 0.5, 1, 3, 5 
Temp coef. (α0.3, 0.5, 0.7, 0.9, 0.95 
Percent of shaking (β0.2, 0.4, 0.6, 0.7, 0.8 
#Iteration 10, 15, 20, 40, 80 
 γ 0.2, 0.3, 0.4, 0.6, 0.8 
AlgorithmParametersLevels
SA_VNS Tmax 20, 50, 80, 100, 150 
Tmin 0.1, 0.5, 1, 3, 5 
Temp coef. (α0.3, 0.5, 0.7, 0.9, 0.95 
Percent of shaking (β0.2, 0.4, 0.6, 0.7, 0.8 
#Iteration 10, 15, 20, 40, 80 
 γ 0.2, 0.3, 0.4, 0.6, 0.8 
Table 2

Taguchi-based values for selected parameters

Network typeParametersValueNetwork typeParametersValue
Small network Tmax 50 Large network Tmax 80 
Tmin Tmin 0.5 
Temp coef. (α0.9 Temp coef. (α0.95 
Percent of shaking (β0.6 Percent of shaking (β0.2 
#Iteration 80 #Iteration 80 
Γ 0.6 γ 0.6 
Network typeParametersValueNetwork typeParametersValue
Small network Tmax 50 Large network Tmax 80 
Tmin Tmin 0.5 
Temp coef. (α0.9 Temp coef. (α0.95 
Percent of shaking (β0.6 Percent of shaking (β0.2 
#Iteration 80 #Iteration 80 
Γ 0.6 γ 0.6 

A total of 25 distinct tests were created based on Taguchi's suggestions. The two-loop network and the El-Mostakbal City network were selected from the set of small and medium instances. Due to randomness, the algorithm was run 15 times for each instance, resulting in a total of 750 experiments for parameter tuning of the SA-VNS. The minimum, average, and maximum results were then used for comparison. The results of these experiments on the parameters for small and large networks are presented in Figures 9 and 10, respectively.
Figure 9

SA-VNS Taguchi DOE for small networks.

Figure 9

SA-VNS Taguchi DOE for small networks.

Close modal
Figure 10

SA-VNS Taguchi DOE for large networks.

Figure 10

SA-VNS Taguchi DOE for large networks.

Close modal

In large networks, it was observed that SA-VNS was sensitive to shaking, with β set to 0.2 being appropriate for such networks. On the other hand, a higher number of iterations suggests that more local search can lead to better solutions. For both small and large networks, tuning the γ parameter to 0.6 indicates that lowering the diameter of all pipes does not always result in a better solution. Therefore, this parameter, which is innovatively designed in the SA-VNS algorithm, is important.

Parameters for small networks were considered to be large and vice versa to assess the effect of parameter tuning and the differences between large and small networks. Tables 3 and 4 present the sensitivity analysis, while Figures 11 and 12 show that parameters need to be tuned independently for small and large networks. In these figures, each point represents a set of algorithm parameter settings. Proper tuning of the algorithm parameters can achieve both better solutions and reduced solution dispersion.
Table 3

Sensitivity analysis of parameters tuning (small networks)

Network nameParametersValue (bad tuning)Total cost ($)ParametersValue (good tuning)Total cost ($)
Two-loop network Tmax 80 Min: 434
Ave.: 513
Max: 645 
Tmax 50 Min: 419
Ave.: 422
Max: 424 
Tmin 0.5 Tmin 
Α 0.95 Α 0.9 
Β 0.2 Β 0.6 
Iteration 80 Iteration 80 
γ 0.6 γ 0.6 
Network nameParametersValue (bad tuning)Total cost ($)ParametersValue (good tuning)Total cost ($)
Two-loop network Tmax 80 Min: 434
Ave.: 513
Max: 645 
Tmax 50 Min: 419
Ave.: 422
Max: 424 
Tmin 0.5 Tmin 
Α 0.95 Α 0.9 
Β 0.2 Β 0.6 
Iteration 80 Iteration 80 
γ 0.6 γ 0.6 
Table 4

Sensitivity analysis of parameters tuning (large networks)

Network nameParametersValue (bad tuning)Total cost ($)ParametersValue (good tuning)Total cost ($)
Mostakbal City Tmax 50 Min: 105,800
Ave.: 108,635
Max: 112,668 
Tmax 80 Min: 101,282
Ave.: 102,628
Max: 103,878 
Tmin Tmin 0.5 
α 0.9 α 0.95 
β 0.6 β 0.2 
Iteration 80 Iteration 80 
γ 0.6 γ 0.6 
Network nameParametersValue (bad tuning)Total cost ($)ParametersValue (good tuning)Total cost ($)
Mostakbal City Tmax 50 Min: 105,800
Ave.: 108,635
Max: 112,668 
Tmax 80 Min: 101,282
Ave.: 102,628
Max: 103,878 
Tmin Tmin 0.5 
α 0.9 α 0.95 
β 0.6 β 0.2 
Iteration 80 Iteration 80 
γ 0.6 γ 0.6 
Figure 11

Sensitivity analysis of parameters tuning for total cost (×103) (small networks).

Figure 11

Sensitivity analysis of parameters tuning for total cost (×103) (small networks).

Close modal
Figure 12

Sensitivity analysis of parameters tuning for total cost (×106) (large networks).

Figure 12

Sensitivity analysis of parameters tuning for total cost (×106) (large networks).

Close modal
In addition, a sensitivity analysis of the algorithm's parameters was conducted using various values by manipulating each parameter and performing multiple experiments, with the results shown in Figure 13. This analysis involved considering 10 different values for each parameter while keeping the others constant, then varying the next parameter with 10 different values and holding the others constant. The list of tuned values for each parameter is provided in Table 5. Consequently, the Malard City case study was executed and tested a total of 60 times. As illustrated in the figure, the most sensitive and influential parameter is β, the shaking percentage of solutions, which both improved the quality of the solutions and reduced execution time.
Table 5

Different values of selected parameters for sensitivity analysis

No.TmaxTminαβγIterationNo.TmaxTminαβγIteration
10 0.05 0.1 0.01 0.1 10 65 0.65 0.07 0.35 60 
20 0.1 0.2 0.02 0.15 20 90 0.75 0.1 0.4 70 
35 0.2 0.4 0.03 0.2 30 100 10 0.85 0.15 0.45 90 
45 0.3 0.5 0.04 0.25 40 120 15 0.9 0.18 0.5 100 
55 0.7 0.55 0.05 0.3 50 10 150 20 0.98 0.25 0.55 120 
No.TmaxTminαβγIterationNo.TmaxTminαβγIteration
10 0.05 0.1 0.01 0.1 10 65 0.65 0.07 0.35 60 
20 0.1 0.2 0.02 0.15 20 90 0.75 0.1 0.4 70 
35 0.2 0.4 0.03 0.2 30 100 10 0.85 0.15 0.45 90 
45 0.3 0.5 0.04 0.25 40 120 15 0.9 0.18 0.5 100 
55 0.7 0.55 0.05 0.3 50 10 150 20 0.98 0.25 0.55 120 
Figure 13

Sensitivity analysis of the SA-VNS algorithm parameters.

Figure 13

Sensitivity analysis of the SA-VNS algorithm parameters.

Close modal

Comparison of SA-VNS with the previously studied algorithms

Two-loop network design

As described in Section 4.1, this network has been studied in several works. The results for the two-loop network, obtained using SA-VNS, are shown in Table 6 and 7. The total cost function for this solution is $419. Figure 14 also shows the convergence speed for the two-loop network. The results indicate that the performance of SA-VNS is comparable to other algorithms reviewed in the literature in terms of the best cost function, while its convergence speed is superior. Tables 8 and 9 list the least-cost solutions reported by different researchers since 1977. The literature provides optimal pipe diameters D (in inches), pipe segment lengths (in meters), and costs (in $). A comparison of five EAs for WDN optimization was carried out by El-Ghandour & Elbeltagi (2018) which included PSO, GA, ACO, MA, and SFLA algorithms. In their study, the best convergence speed among these five methods was 5,000 for PSO. The convergence speed for the SA-VNS algorithm was 1,610, as shown in Figure 14. However, the SA-VNS algorithm achieved a good solution of 423 after approximately 470 function evaluations. This result demonstrates that SA-VNS has good efficiency in terms of convergence speed.
Table 6

Results of two-loop network (pipes)

Pipe
Diameter (in.)Discharge (L/s)Velocity (m/s)Pipe
Diameter (in.)Discharge (L/s)Velocity (m/s)
ijij
18 311.00 1.89 16 147.16 1.13 
10 93.77 1.85 10 55.16 1.09 
16 189.23 1.46 10 65.77 1.30 
9.07 1.12 0.16 0.31 
Pipe
Diameter (in.)Discharge (L/s)Velocity (m/s)Pipe
Diameter (in.)Discharge (L/s)Velocity (m/s)
ijij
18 311.00 1.89 16 147.16 1.13 
10 93.77 1.85 10 55.16 1.09 
16 189.23 1.46 10 65.77 1.30 
9.07 1.12 0.16 0.31 
Table 7

Results of two-loop network (nodes)

Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−310 210.0 0.0 75.0 150.0 33.76 
28.0 150.0 53.25 92.0 165.0 30.48 
28.0 160.0 30.42 55.0 160.0 30.68 
33.0 155.0 43.48     
Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−310 210.0 0.0 75.0 150.0 33.76 
28.0 150.0 53.25 92.0 165.0 30.48 
28.0 160.0 30.42 55.0 160.0 30.68 
33.0 155.0 43.48     
Table 8

Comparison of different solutions

SA-VNS (current work)
Alperovits & Shamir (1977))
Goulter et al. (1986) 
Kessler & Shamir (1989) 
Simpson et al. (1994) 
Savic & Walters (1997) 
PipeL (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)
1,000 18 256 20 383 20 1,000 18 1,000 18 1,000 18 
   744 18 617 18       
1,000 10 996 1,000 10 66 12 238 12 1,000 10 
   934 10 762 10     
1,000 16 1,000 18 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 319 687 713 1,000 1,000 
   681 313 287   
1,000 16 1,000 16 1,000 16 836 16 629 16 1,000 16 
   164 14 371 14       
1,000 10 785 12 98 12 109 12 989 10 1,000 10 
   215 10 902 10 891 10 11  
1,000 10 1,000 492 10 819 10 922 10 1,000 10 
   508 181 78     
1,000 991 991 920 1,000 1,000 
   80     
Cost (×103): 419 497 418 418 402 419 
SA-VNS (current work)
Alperovits & Shamir (1977))
Goulter et al. (1986) 
Kessler & Shamir (1989) 
Simpson et al. (1994) 
Savic & Walters (1997) 
PipeL (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)
1,000 18 256 20 383 20 1,000 18 1,000 18 1,000 18 
   744 18 617 18       
1,000 10 996 1,000 10 66 12 238 12 1,000 10 
   934 10 762 10     
1,000 16 1,000 18 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 319 687 713 1,000 1,000 
   681 313 287   
1,000 16 1,000 16 1,000 16 836 16 629 16 1,000 16 
   164 14 371 14       
1,000 10 785 12 98 12 109 12 989 10 1,000 10 
   215 10 902 10 891 10 11  
1,000 10 1,000 492 10 819 10 922 10 1,000 10 
   508 181 78     
1,000 991 991 920 1,000 1,000 
   80     
Cost (×103): 419 497 418 418 402 419 
Table 9

Comparison of different solutions (continued)

Geem (2009) 
Sedki & Ouazar (2012) 
Zhou et al. (2016) 
Naveen Naidu et al. (2020) 
Ezzeldin & Djebedjian (2020) 
Pankaj et al. (2020) 
PipeL (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)
1,000 18 1,000 18 1,000 18 1,000 18 1,000 18 1,000 18 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 1,000 1,000 1,000 1,000 1,000 
1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 1,000 1,000 1,000 1,000 1,000 
Cost (×103): 419 419 419 419 419 419 
Geem (2009) 
Sedki & Ouazar (2012) 
Zhou et al. (2016) 
Naveen Naidu et al. (2020) 
Ezzeldin & Djebedjian (2020) 
Pankaj et al. (2020) 
PipeL (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)L (m)D (in.)
1,000 18 1,000 18 1,000 18 1,000 18 1,000 18 1,000 18 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 1,000 1,000 1,000 1,000 1,000 
1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 1,000 16 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 1,000 10 
1,000 1,000 1,000 1,000 1,000 1,000 
Cost (×103): 419 419 419 419 419 419 
Figure 14

Relationship between number of objective function evaluations and total cost (two-loop network).

Figure 14

Relationship between number of objective function evaluations and total cost (two-loop network).

Close modal

Rehabilitation of the New York network

Since the optimization of this network focuses on rehabilitation, choosing a diameter of 0 and its associated cost of 0 for the available pipes indicates that the old pipe remains without reinforcement. The results for the New York network, obtained using SA-VNS, are shown in Tables 10 and 11. The total cost function for this best solution is dollars compared to the best-known solution dollars (Zecchin Maier Simpson Leonard & Nixon 2007), the SA-VNS algorithm has also identified this optimal solution. A comparison of the convergence speed of the SA-VNS algorithm with some previously studied algorithms is presented in Figure 15.
Table 10

Results of New York network (pipes)

Pipe numberDiameter (in)Discharge (ft3/s)Velocity (m/s)Pipe numberDiameter (in)Discharge (ft3/s)Velocity (m/s)
– – 12 – – 
– – 13 – – 
– – 14 – – 
– – 15 – – 
– – 16 96 39.14 0.2377 
– – 17 96 159.4 0.9662 
144 192.8 0.5182 18 84 82.89 0.6553 
– – 19 72 109.93 1.1857 
– – 20 – – 
10 – – 21 72 81.01 0.8748 
11 – –     
Min velocity: 0.78 Average velocity: 0.7396 Max velocity: 1.1857 
Pipe numberDiameter (in)Discharge (ft3/s)Velocity (m/s)Pipe numberDiameter (in)Discharge (ft3/s)Velocity (m/s)
– – 12 – – 
– – 13 – – 
– – 14 – – 
– – 15 – – 
– – 16 96 39.14 0.2377 
– – 17 96 159.4 0.9662 
144 192.8 0.5182 18 84 82.89 0.6553 
– – 19 72 109.93 1.1857 
– – 20 – – 
10 – – 21 72 81.01 0.8748 
11 – –     
Min velocity: 0.78 Average velocity: 0.7396 Max velocity: 1.1857 
Table 11

Results of New York network (nodes)

Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−2,017.5 300 11 170 255 8.1700 
92.4 255 16.9900 12 117.1 255 8.7300 
92.4 255 13.5000 13 117.1 255 10.0100 
88.2 255 12.4700 14 92.4 255 13.2400 
88.2 255 11.5700 15 92.4 255 16.6100 
88.2 255 10.8600 16 170 260 0.0400 
88.2 255 9.7600 17 57.5 272 0.0300 
88.2 255 9.3900 18 117.1 255 2.6800 
170 255 8.1400 19 117.1 255 0.0200 
10 92.4 255 8.1200 20 170 255 2.4800 
Min pressure: 0.02 Average pressure: 8.558 Max pressure: 16.99 
Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−2,017.5 300 11 170 255 8.1700 
92.4 255 16.9900 12 117.1 255 8.7300 
92.4 255 13.5000 13 117.1 255 10.0100 
88.2 255 12.4700 14 92.4 255 13.2400 
88.2 255 11.5700 15 92.4 255 16.6100 
88.2 255 10.8600 16 170 260 0.0400 
88.2 255 9.7600 17 57.5 272 0.0300 
88.2 255 9.3900 18 117.1 255 2.6800 
170 255 8.1400 19 117.1 255 0.0200 
10 92.4 255 8.1200 20 170 255 2.4800 
Min pressure: 0.02 Average pressure: 8.558 Max pressure: 16.99 
Figure 15

Relationship between number of objective function evaluations and total cost (New York network).

Figure 15

Relationship between number of objective function evaluations and total cost (New York network).

Close modal

Three-loop network with pump

The results for the three-loop network with a pump, obtained using SA-VNS, are shown in Tables 12 and 13 (nodes 2 and 12 are the reservoir). The total cost function for this solution is dollars while the cost function value reported by Samani & Zanganeh (2010) is dollars showing a 0.648% improvement. These results demonstrate that SA-VNS has achieved a better optimal solution. It is worth noting that Samani & Zanganeh (2010) included the cost of the reservoirs in their study, whereas our approach subtracts the cost of the reservoirs from the total cost, considering only the cost of the pipes. Figure 16 shows the convergence speed for the three-loop network. Compared to Samani & Zanganeh (2010), our approach obtained more efficient diameters in terms of the cost function.
Table 12

Results of three-loop network with pump (pipes)

Pipe
Diameter (mm)Discharge (L/s)Velocity (m/s)Pipe
Diameter (mm)Discharge (L/s)Velocity (m/s)
ijij
350 149.76 1.56 14 150 5.09 0.29 
300 124.76 1.76 150 15.3 0.87 
250 67.4 1.37 10 200 45.3 1.44 
15 200 88.36 2.81 10 11 250 91.6 1.87 
300 98.05 1.39 10 13 150 14.09 0.8 
150 14.7 0.83 11 12 300 97.6 1.38 
250 78.05 1.59 13 14 150 8.09 0.46 
150 2.09 0.12 15 Pump 88.36 – 
10 150 20.22 1.14      
Pipe
Diameter (mm)Discharge (L/s)Velocity (m/s)Pipe
Diameter (mm)Discharge (L/s)Velocity (m/s)
ijij
350 149.76 1.56 14 150 5.09 0.29 
300 124.76 1.76 150 15.3 0.87 
250 67.4 1.37 10 200 45.3 1.44 
15 200 88.36 2.81 10 11 250 91.6 1.87 
300 98.05 1.39 10 13 150 14.09 0.8 
150 14.7 0.83 11 12 300 97.6 1.38 
250 78.05 1.59 13 14 150 8.09 0.46 
150 2.09 0.12 15 Pump 88.36 – 
10 150 20.22 1.14      
Table 13

Results of three-loop network with pump (nodes)

Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
25.0 345 41.55 30.0 335 32.68 
−55.13 379.5 20.0 10 12.0 330 48.1 
6.0 365 29.24 11 6.0 380 25.98 
12.0 330 47.81 12 −109.87 369.5 50.0 
12.0 335 25.57 13 6.0 338 28.28 
20.0 328 43.16 14 6.0 338 24.4 
3.0 340 20.93 15 3.0 335 86.85 
30.0 340 22.01     
Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
25.0 345 41.55 30.0 335 32.68 
−55.13 379.5 20.0 10 12.0 330 48.1 
6.0 365 29.24 11 6.0 380 25.98 
12.0 330 47.81 12 −109.87 369.5 50.0 
12.0 335 25.57 13 6.0 338 28.28 
20.0 328 43.16 14 6.0 338 24.4 
3.0 340 20.93 15 3.0 335 86.85 
30.0 340 22.01     
Figure 16

Relationship between number of objective function evaluations and total cost (three-loop network with pump).

Figure 16

Relationship between number of objective function evaluations and total cost (three-loop network with pump).

Close modal

El-Mostakbal City

The reason for implementing the SA-VNS algorithm in El-Mostakbal City is to demonstrate the algorithm's efficiency by investigating real and large-scale cases. This case study was conducted by Abou Rayan Djebedjian El-Hak & Herrick (2003) and El-Ghandour & Elbeltagi (2018). The SA-VNS algorithm was applied to this network, which consists of 44 pipes and 33 nodes. The results for El-Mostakbal City, obtained using SA-VNS, are shown in Tables 14 and 15. The total cost function for the SA-VNS solution is $101,282, while the cost function value reported by Abou Rayan et al. (2003) is $142,186, indicating a 28.76% improvement. Additionally, the minimum costs obtained by El-Ghandour & Elbeltagi (2018) for the GA, PSO, ACO, MA, and SFLA models were $110,637, $104,346, $115,176, $106,166, and $108,819, respectively, showing a 2.78% improvement compared to PSO. These results demonstrate that SA-VNS has achieved a more efficient design in terms of the cost function. Furthermore, the minimum, average, and maximum pressure heads achieved by Abou Rayan et al. (2003) were 22.22, 29.04, and 35.63 m, respectively, compared to 20.01, 25.41, and 34.93 m with SA-VNS. Additionally, the minimum, average, and maximum velocities reported by Abou Rayan et al. were 0.06, 0.838, and 1.87 m/s, respectively, while for SA-VNS, these values are 0.13, 0.933, and 2.18 m/s. The results show that while the diameter of the pipes and the cost have been reduced, the pressure head and velocity have also improved. Figure 17 illustrates the convergence speed for El-Mostakbal City, which is appropriate given the large number of nodes and pipes.
Table 14

Results of El-Mostakbal City (pipes)

Pipe numberDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe numberDiameter (mm)Discharge (L/s)Velocity (m/s)
600 352.5 1.25 23 150 18.04 1.02 
500 352.5 1.8 24 150 2.96 0.17 
150 20.18 1.14 25 150 4.12 0.23 
150 20.18 1.14 26 150 17.34 0.98 
150 16.65 0.94 27 200 10.79 0.34 
150 16.65 0.94 28 150 2.27 0.13 
150 16.65 0.94 29 150 5.78 0.33 
500 308.32 1.57 30 250 7.08 0.14 
400 274.07 2.18 31 150 7.94 0.45 
10 150 18.6 1.05 32 200 13.74 0.44 
11 150 17.63 33 150 8.04 0.46 
12 250 17.04 0.35 34 150 21.79 1.23 
13 150 13.85 0.78 35 300 94.39 1.34 
14 150 13.85 0.78 36 150 24.52 1.39 
15 400 148.75 1.18 37 150 5.8 0.33 
16 400 234.66 1.87 38 250 72.6 1.48 
17 250 86 1.75 39 150 23.62 1.34 
18 200 28.49 0.91 40 150 5.42 0.31 
19 150 10.45 0.59 41 150 13.78 0.78 
20 200 30.88 0.98 42 250 48.98 
21 200 38.22 1.22 43 200 16 0.51 
22 200 38.22 1.22 44 400 134.91 1.07 
Min velocity: 0.13 Average velocity: 0.933 Max velocity: 2.18 
Pipe numberDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe numberDiameter (mm)Discharge (L/s)Velocity (m/s)
600 352.5 1.25 23 150 18.04 1.02 
500 352.5 1.8 24 150 2.96 0.17 
150 20.18 1.14 25 150 4.12 0.23 
150 20.18 1.14 26 150 17.34 0.98 
150 16.65 0.94 27 200 10.79 0.34 
150 16.65 0.94 28 150 2.27 0.13 
150 16.65 0.94 29 150 5.78 0.33 
500 308.32 1.57 30 250 7.08 0.14 
400 274.07 2.18 31 150 7.94 0.45 
10 150 18.6 1.05 32 200 13.74 0.44 
11 150 17.63 33 150 8.04 0.46 
12 250 17.04 0.35 34 150 21.79 1.23 
13 150 13.85 0.78 35 300 94.39 1.34 
14 150 13.85 0.78 36 150 24.52 1.39 
15 400 148.75 1.18 37 150 5.8 0.33 
16 400 234.66 1.87 38 250 72.6 1.48 
17 250 86 1.75 39 150 23.62 1.34 
18 200 28.49 0.91 40 150 5.42 0.31 
19 150 10.45 0.59 41 150 13.78 0.78 
20 200 30.88 0.98 42 250 48.98 
21 200 38.22 1.22 43 200 16 0.51 
22 200 38.22 1.22 44 400 134.91 1.07 
Min velocity: 0.13 Average velocity: 0.933 Max velocity: 2.18 
Table 15

Results of El-Mostakbal city (nodes)

Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−352.5 58.89 18 24 15 20.78 
15 34.82 19 19.2 15 20.64 
24 14 34.93 20 34.1 15 20.58 
14 29.75 21 15 23.09 
19.2 14 28.49 22 20.8 15.5 20.06 
14 30.14 23 15.5 20.41 
14 30.88 24 16 15 20.89 
17.6 14 32.92 25 16 15.5 25.6 
20.8 14 31.25 26 15.5 24.23 
10 19.2 14 26.62 27 15.5 20.86 
11 14 26.55 28 15.5 20.67 
12 14 27.9 29 24 15.5 20.26 
13 14 28.76 30 15.5 22.68 
14 14 29.32 31 19.2 15.5 20.94 
15 19.2 14 26.95 32 19.2 15.5 20.01 
16 14 26.23 33 16 15.5 20.48 
17 24 14 25.46     
Min pressure: 20.01 Average pressure: 25.411 Max pressure: 34.93 
Node numberConsumption (L/s)Elevation (m)Pressure head (m)Node numberConsumption (L/s)Elevation (m)Pressure head (m)
−352.5 58.89 18 24 15 20.78 
15 34.82 19 19.2 15 20.64 
24 14 34.93 20 34.1 15 20.58 
14 29.75 21 15 23.09 
19.2 14 28.49 22 20.8 15.5 20.06 
14 30.14 23 15.5 20.41 
14 30.88 24 16 15 20.89 
17.6 14 32.92 25 16 15.5 25.6 
20.8 14 31.25 26 15.5 24.23 
10 19.2 14 26.62 27 15.5 20.86 
11 14 26.55 28 15.5 20.67 
12 14 27.9 29 24 15.5 20.26 
13 14 28.76 30 15.5 22.68 
14 14 29.32 31 19.2 15.5 20.94 
15 19.2 14 26.95 32 19.2 15.5 20.01 
16 14 26.23 33 16 15.5 20.48 
17 24 14 25.46     
Min pressure: 20.01 Average pressure: 25.411 Max pressure: 34.93 
Figure 17

Relationship between number of objective function evaluations and total cost (El-Mostakbal City).

Figure 17

Relationship between number of objective function evaluations and total cost (El-Mostakbal City).

Close modal

Evaluation of the SA-VNS algorithm's performance

The performance of an optimization algorithm depends on three categories: effectiveness (i.e. the measure of how close the algorithm gets to the global optimum), efficiency (i.e. the computational effort required to obtain the solution), and reliability (i.e. the ability to achieve the same optimal solution by adjusting the control parameter settings). To compare the performance of different metaheuristic algorithms, many runs and some statistical metrics of the results are required.

The best performance of an optimization algorithm is indicated by achieving the highest effectiveness with the fewest total evaluations and the lowest number of objective function evaluations of the optimization algorithm especially when multiple solutions with the same best cost are obtained. Therefore, the two metrics for a metaheuristic optimization algorithm are the number of evaluations (generations), Ngen, and the number of minimal function evaluations, Nobj−eval. Therefore, the total number of generations significantly affects computational time. Consequently, it is important to prevent an algorithm with high Ngen and low Nobj−eval to be ranked better than an algorithm with low Ngen and high Nobj−eval. To address this ranking challenge, Ezzeldin & Djebedjian (2020) present a suitable performance indicator to highlight the overall performance of the optimization process, which is given as:
(7)

The proposed definition of ηalgorithm in Equation (7) is based on the individual influences of Ngen and Nobj−eval. The equation satisfies the upper extreme ideal condition which gives the ideal performance indicator (ηalgorithm = 100%). When Ngen = Nobj−eval = 1, the ideal number of generations matches the ideal minimal number of evaluations. Beside the satisfied condition, the mathematical formulation of Equation (7) takes consideration for large networks, the value of Ngen is very large and the common logarithm with base 10 simplifies the correlation with each of Ngen and Nobj−eval and decreases the floating-point errors. The values 0.99 and 0.01 (i.e. their sum equals 1) used in the second and third terms of Equation (7) balance the importance of Ngen over Nobj−eval by making an algorithm with low Ngen and high Nobj−eval yields higher values than an algorithm with high Ngen and low Nobj−eval. Here all studied benchmarks have been performed 15 times and based on Equation (7), the standard deviation and performance indicator are calculated as Tables 1618.

Table 16

Performance evaluation of the optimal solution for the two-loop network (cost × 103 units)

Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Eusuff & Lansey (2003)  SFLA 17,000 11,155 419 N/A N/A N/A 95.765 
Suribabu & Neelakantan (2006)  PSO 2,000 760 419 N/A N/A N/A 96.697 
Suribabu (2010)  DE 10,000 13,20 419 N/A N/A N/A 95.999 
Ezzeldin et al. (2014)  IDPSO 5,000 549 419 N/A N/A N/A 96.300 
Reca Martinez & López (2017)  B-GA 20,000 2,000 419 N/A N/A N/A 95.698 
El-Ghandour & Elbeltagi (2018)  GA 20,000 6,060 419 469 437.88 13,566 95.697 
PSO 2,500 1,650 419 453 430.1 9,279 96.597 
ACO 25,000 2,650 419 460 434.54 14,273 95.602 
MA 20,000 11,402 419 453 425.44 11,152 95,695 
Moosavian & Lence (2019)  FDE 1,000 197 419 N/A N/A N/A 96.999 
Praneeth Vasan & Raju (2019)  WCA 22,000 2,200 419 N/A N/A N/A 95.657 
Ezzeldin & Djebedjian (2020)  WOA 2,100 1,068 419 N/A N/A N/A 96.675 
Present Study SA-VNS 1,800 1,610 419 423 421.67 1,886 96.802 
Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Eusuff & Lansey (2003)  SFLA 17,000 11,155 419 N/A N/A N/A 95.765 
Suribabu & Neelakantan (2006)  PSO 2,000 760 419 N/A N/A N/A 96.697 
Suribabu (2010)  DE 10,000 13,20 419 N/A N/A N/A 95.999 
Ezzeldin et al. (2014)  IDPSO 5,000 549 419 N/A N/A N/A 96.300 
Reca Martinez & López (2017)  B-GA 20,000 2,000 419 N/A N/A N/A 95.698 
El-Ghandour & Elbeltagi (2018)  GA 20,000 6,060 419 469 437.88 13,566 95.697 
PSO 2,500 1,650 419 453 430.1 9,279 96.597 
ACO 25,000 2,650 419 460 434.54 14,273 95.602 
MA 20,000 11,402 419 453 425.44 11,152 95,695 
Moosavian & Lence (2019)  FDE 1,000 197 419 N/A N/A N/A 96.999 
Praneeth Vasan & Raju (2019)  WCA 22,000 2,200 419 N/A N/A N/A 95.657 
Ezzeldin & Djebedjian (2020)  WOA 2,100 1,068 419 N/A N/A N/A 96.675 
Present Study SA-VNS 1,800 1,610 419 423 421.67 1,886 96.802 

Note: N/A means that the information was not available.

Table 17

Performance evaluation of the optimal solution for New York network (cost × 106 U.S. dollars)

Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Dorigo et al. (1996)  ASelite N/A N/A 38.638 39.511 38.988 N/A – 
Dandy et al. (1996)  GAimp N/A 40,030 38.796 N/A N/A N/A – 
Bullnheimer et al. (1997)  ASrank N/A N/A 38.638 39.221 38.777 N/A – 
Maier et al. (2003)  ACOA N/A N/A 38.638 N/A N/A N/A – 
Zecchin et al. (2005)  ASi−best N/A 37,186 38.638 39.492 38.849 N/A – 
Zecchin et al. (2006)  MMAS N/A N/A 38.638 39.415 38.836 N/A – 
El-Ghandour & Elbeltagi (2018)  GA 60,000 23,070 38.796 49.7512 40.963873 2,817,227 95.224 
PSO 60,000 6,100 38.796 48.9255 40.822398 2,539,279 95.222 
ACO 60,000 55,950 38.796 40.1664 39.236350 276,923 95.233 
MA 60,000 43,482 38.796 41.6734 39.233248 590,122 95.227 
SFLA 60,000 7,963 38.796 41.5921 39.514394 910,341 95.222 
Present Study SA-VNS 55,000 54,544 38.638 39.3285 38.885213 251,723 95.2805 
Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Dorigo et al. (1996)  ASelite N/A N/A 38.638 39.511 38.988 N/A – 
Dandy et al. (1996)  GAimp N/A 40,030 38.796 N/A N/A N/A – 
Bullnheimer et al. (1997)  ASrank N/A N/A 38.638 39.221 38.777 N/A – 
Maier et al. (2003)  ACOA N/A N/A 38.638 N/A N/A N/A – 
Zecchin et al. (2005)  ASi−best N/A 37,186 38.638 39.492 38.849 N/A – 
Zecchin et al. (2006)  MMAS N/A N/A 38.638 39.415 38.836 N/A – 
El-Ghandour & Elbeltagi (2018)  GA 60,000 23,070 38.796 49.7512 40.963873 2,817,227 95.224 
PSO 60,000 6,100 38.796 48.9255 40.822398 2,539,279 95.222 
ACO 60,000 55,950 38.796 40.1664 39.236350 276,923 95.233 
MA 60,000 43,482 38.796 41.6734 39.233248 590,122 95.227 
SFLA 60,000 7,963 38.796 41.5921 39.514394 910,341 95.222 
Present Study SA-VNS 55,000 54,544 38.638 39.3285 38.885213 251,723 95.2805 
Table 18

Performance evaluation of the optimal solution for El-Mostakbal City network, Egypt (unit cost: $)

Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Abou Rayan et al. (2003)  SUMT N/A N/A 142,187 N/A N/A N/A – 
El-Ghandour & Elbeltagi (2018)  GA 150,000 NA 110,637 N/A N/A N/A – 
PSO 150,000 68,800 104,347 N/A N/A N/A – 
ACO 150,000 N/A 115,177 N/A N/A N/A – 
MA 150,000 N/A 106,166 N/A N/A N/A – 
SFLA N/A N/A 108,819 N/A N/A N/A – 
Ezzeldin & Djebedjian (2020)  WOA 300,000 176,380 103,582 N/A N/A N/A 94.519 
Present Study SA-VNS 120,000 105,830 101,283 106,521 103,408 65,856 94.984 
Author(s) (year)Optimization techniqueNgenNobj−evalMin. costMax. costAverage costStandard deviationPerformance indicator (%)
Abou Rayan et al. (2003)  SUMT N/A N/A 142,187 N/A N/A N/A – 
El-Ghandour & Elbeltagi (2018)  GA 150,000 NA 110,637 N/A N/A N/A – 
PSO 150,000 68,800 104,347 N/A N/A N/A – 
ACO 150,000 N/A 115,177 N/A N/A N/A – 
MA 150,000 N/A 106,166 N/A N/A N/A – 
SFLA N/A N/A 108,819 N/A N/A N/A – 
Ezzeldin & Djebedjian (2020)  WOA 300,000 176,380 103,582 N/A N/A N/A 94.519 
Present Study SA-VNS 120,000 105,830 101,283 106,521 103,408 65,856 94.984 

The performance of the SA-VNS algorithm for the two-loop network shows that both the average and maximum costs have improved compared to previous studies. Additionally, the SA-VNS has the lowest standard deviation among those reported in the literature. Furthermore, the performance indicator of the SA-VNS algorithm was superior to 11 previous studies, with only one study showing slightly different results. These findings demonstrate that the SA-VNS algorithm delivers high-quality results in terms of both the difference between optimal solutions and efficiency for the studied network.

The performance results of the SA-VNS algorithm for the New York City network indicate that the average cost was lower than that of all other algorithms, and the standard deviation was also better than in previous studies. Additionally, the performance indicator of the SA-VNS algorithm surpassed that of other algorithms.

Finally, the performance analysis of the SA-VNS algorithm for the El-Mostakbal City network, tested by three researchers (as mentioned in Section 4.3), shows that the SA-VNS achieved better results in terms of average and maximum costs, standard deviation, and performance indicator, outperforming all other methods. It is worth noting that the improved results compared to previous studies are due to two main factors: first, parameter tuning was not performed in previous investigations, and second, this novel algorithm incorporates a new and efficient local search mechanism.

Description of Malard City WDN

In this paper, the SA-VNS algorithm is applied to a real WDN. This section first describes the city properties and network specifications, then explains the demand estimation method, and finally presents the network optimization and the obtained results.

Malard City, the capital of Malard County in Tehran province, Iran, is located within geographical coordinates of 35:38 to 35:42 latitude and 50:57 to 51:00 longitude. Covering an area of 16 km2, Malard City has a population of approximately 320,000. The location of Malard City and its WDN is shown in Figure 18.
Figure 18

Location of Malard City and its water distribution network.

Figure 18

Location of Malard City and its water distribution network.

Close modal
The schematic of the Malard City WDN is illustrated in Figure 19. This network comprises 7 reservoirs, 1 tank, 94 pipelines, and 73 nodes. The minimum and maximum pressure heads are set at 20 and 60 m, respectively. The tank is operated using gravity, while the reservoirs are equipped with motor pumps.
Figure 19

Schematic of Malard City water distribution network.

Figure 19

Schematic of Malard City water distribution network.

Close modal

Tank and reservoir characteristics are detailed in Tables 19 and 20. The reservoirs are equipped with four types of pumps, designated as A, B, C, and D in the tables. The number of pumps in each reservoir is also listed in Table 19. The water network consists of two types of pipelines:

  • Distribution Pipelines: 5,285 pieces with a total length of 257 km.

  • Transmission Pipelines: 1,007 pieces with a total length of 52 km, as shown in Figure 18.

Table 19

Reservoirs and tank characteristics

ReservoirPump typePump IDCapacity (m3)Number of pumpsTotal head (m)
2,000 1,209 
5,000 1,200.5 
64 2,000 1,208.5 
61 1,600 1,200.5 
49 5,000 1,190.5 
25 15,000 1,183 
78 10,000 1,168.5 
Tank   500  1,157 
ReservoirPump typePump IDCapacity (m3)Number of pumpsTotal head (m)
2,000 1,209 
5,000 1,200.5 
64 2,000 1,208.5 
61 1,600 1,200.5 
49 5,000 1,190.5 
25 15,000 1,183 
78 10,000 1,168.5 
Tank   500  1,157 
Table 20

Pumps characteristics

Pump typeDischarge (L/s)Head (m)Pump typeDischarge (L/s)Head (m)Pump typeDischarge (L/s)Head (m)
65 40 90 
110 52 60 38 40 82 
190 33 90 35 95 65 
40 57    
130 37 210 50   
190 33 150 41   
Pump typeDischarge (L/s)Head (m)Pump typeDischarge (L/s)Head (m)Pump typeDischarge (L/s)Head (m)
65 40 90 
110 52 60 38 40 82 
190 33 90 35 95 65 
40 57    
130 37 210 50   
190 33 150 41   

In some areas, where demand is high, multiple pipes are used in parallel between two nodes. To simplify the model, parallel pipes between two nodes are treated as a single pipe. It is important to note that head losses due to elbows, tees, valves, expanders, reducers, etc., are not considered in this analysis. The pipelines are made from various materials: polyethylene, ductile iron, asbestos cement, and galvanized steel. The Hazen–Williams coefficients used for these materials are as follows:

  • Polyethylene: 140, Asbestos cement: 120, Ductile iron: 100, Galvanized steel: 100.

Nodes demand estimation of Malard City

To estimate the demand at each node, the Thiessen polygon method, introduced by Thiessen (1911) was implemented. This approach can be summarized as:

  • Water consumption: based on statistical data, the average water consumption per person in Malard City is 220 L/day.

  • Population density: Malard City is categorized into three density levels, each with different consumption rates: low density: 60,000 people/km2; middle density: 30,000 people/km2; high density: 15,000 people/km2.

  • Drawing the polygons: the Thiessen polygons are constructed using the perpendicular bisectors of triangles formed by connecting network nodes. In total, 74 polygons related to 74 nodes are obtained. It is important to note that only relevant areas with water consumption were included, and irrelevant areas were excluded.

  • Calculating node demand: the water consumption at each node is determined using the following formula:
where P is the water consumption per person; Di is the density type (i); Aij is the area number (j) of density type (i); S is the total number of areas with the specified density type in each polygon.

All the steps, including the polygon drawings and different population densities, are illustrated in Figure 20. In this figure, population density (low, middle, and high) refers to the ratio of the number of people to the area in that region. All data for Malard-City's WDN have been obtained after estimating the consumption of each node in liters per second as summarized in Tables 2123. The total cost function value for this solution is $679,985 while compared to the current cost, i.e. $5,141,353, is extremely efficient.
Table 21

Pipes data for Malard City

Pipe numberHazen–Williams coefficientPipe length (m)Pipe numberHazen–Williams coefficientPipe length (m)Pipe numberHazen–Williams coefficientPipe length (m)
100 438.2 35 100 856.0 69 100 348.3 
140 735.0 36 100 534.1 70 140 253.7 
100 476.2 37 100 545.0 71 140 186.5 
100 946.9 38 100 505.7 72 140 240.6 
140 525.5 39 100 557.2 73 140 398.6 
100 241.0 40 100 650.7 74 140 85.9 
100 37.0 41 100 459.0 75 140 138.1 
100 413.9 42 100 265.1 76 100 44.2 
100 695.7 43 140 283.8 77 100 298.7 
10 140 736.0 44 100 234.9 78 100 874.3 
11 100 492.4 45 140 221.5 79 140 58.4 
12 100 161.2 46 140 247.5 80 140 60.7 
13 100 391.5 47 140 519.3 81 140 348.6 
14 100 630.7 48 100 723.8 82 140 383.2 
15 100 382.5 49 100 90.0 83 140 294.4 
16 100 529.2 50 100 214.0 84 140 355.1 
17 100 956.8 51 100 435.2 85 140 306.6 
18 100 665.4 52 100 745.2 86 140 198.5 
19 100 1,133.5 53 100 827.6 87 140 442.1 
20 100 173.7 54 100 625.7 88 100 1,505.3 
21 100 504.6 55 100 625.3 89 100 126.0 
22 100 636.6 56 140 599.0 90 140 488.2 
23 100 806.2 57 140 684.9 91 140 32.8 
24 100 163.5 58 100 614.5 92 140 73.9 
25 100 343.4 59 100 635.5 93 140 111.8 
26 100 427.0 60 120 168.3 94 140 423.1 
27 140 767.2 61 100 69.2 95 140 563.8 
28 100 643.8 62 100 553.3 96 140 989.5 
29 100 770.8 63 140 454.2 97 140 161.0 
30 140 802.3 64 140 39.5 98 140 616.1 
31 100 398.5 65 100 254.2 99 140 275.7 
32 100 752.5 66 100 1,390.3 100 140 378.2 
33 100 601.0 67 100 473.2 101 140 145.8 
34 100 404.8 68 100 1,143.9 102 140 104.5 
Pipe numberHazen–Williams coefficientPipe length (m)Pipe numberHazen–Williams coefficientPipe length (m)Pipe numberHazen–Williams coefficientPipe length (m)
100 438.2 35 100 856.0 69 100 348.3 
140 735.0 36 100 534.1 70 140 253.7 
100 476.2 37 100 545.0 71 140 186.5 
100 946.9 38 100 505.7 72 140 240.6 
140 525.5 39 100 557.2 73 140 398.6 
100 241.0 40 100 650.7 74 140 85.9 
100 37.0 41 100 459.0 75 140 138.1 
100 413.9 42 100 265.1 76 100 44.2 
100 695.7 43 140 283.8 77 100 298.7 
10 140 736.0 44 100 234.9 78 100 874.3 
11 100 492.4 45 140 221.5 79 140 58.4 
12 100 161.2 46 140 247.5 80 140 60.7 
13 100 391.5 47 140 519.3 81 140 348.6 
14 100 630.7 48 100 723.8 82 140 383.2 
15 100 382.5 49 100 90.0 83 140 294.4 
16 100 529.2 50 100 214.0 84 140 355.1 
17 100 956.8 51 100 435.2 85 140 306.6 
18 100 665.4 52 100 745.2 86 140 198.5 
19 100 1,133.5 53 100 827.6 87 140 442.1 
20 100 173.7 54 100 625.7 88 100 1,505.3 
21 100 504.6 55 100 625.3 89 100 126.0 
22 100 636.6 56 140 599.0 90 140 488.2 
23 100 806.2 57 140 684.9 91 140 32.8 
24 100 163.5 58 100 614.5 92 140 73.9 
25 100 343.4 59 100 635.5 93 140 111.8 
26 100 427.0 60 120 168.3 94 140 423.1 
27 140 767.2 61 100 69.2 95 140 563.8 
28 100 643.8 62 100 553.3 96 140 989.5 
29 100 770.8 63 140 454.2 97 140 161.0 
30 140 802.3 64 140 39.5 98 140 616.1 
31 100 398.5 65 100 254.2 99 140 275.7 
32 100 752.5 66 100 1,390.3 100 140 378.2 
33 100 601.0 67 100 473.2 101 140 145.8 
34 100 404.8 68 100 1,143.9 102 140 104.5 
Table 22

Nodal requirements for Malard City

Node numberPeak demand (L/s)Level (m)Node numberPeak demand (L/s)Level (m)Node numberPeak demand (L/s)Level (m)
7.5 1,200 34 53.4 1,198 59 1.6 1,165 
10 12.4 1,202 35 31.3 1,198 60 0.3 1,165 
11 16.9 1,203 36 6.8 1,197 61 1.4 1,162 
12 24.1 1,205 37 28.3 1,203 62 2.3 1,163 
13 12.4 1,203 38 22.0 1,204 63 3.5 1,164 
14 24.2 1,203 39 16.6 1,201 64 0.9 1,165 
15 52.2 1,199 40 34.9 1,195 65 3.8 1,165 
16 37.3 1,195 41 15.6 1,188 66 17.3 1,165 
17 5.1 1,194 42 21.2 1,190 67 8.1 1,162 
18 8.2 1,189 43 11.8 1,187 68 5.4 1,159 
19 3.2 1,190 44 5.5 1,185 69 6.9 1,156 
20 4.5 1,194 45 1.6 1,179 70 6.3 1,154 
21 0.5 1,195 46 1.3 1,185 71 3.0 1,153 
22 1.3 1,194 47 17.1 1,185 72 0.0 1,155 
23 11.1 1,183 48 12.2 1,190 73 3.6 1,144 
24 11.2 1,174 49 8.9 1,198 74 0.7 1,143 
25 7.4 1,167 50 20.7 1,183 75 3.7 1,143 
26 12.9 1,169 51 6.4 1,178 76 0.2 1,142 
27 4.3 1,170 52 5.3 1,179 77 4.2 1,142 
28 12.0 1,175 53 2.0 1,182 78 10.0 1,146 
29 10.3 1,179 54 0.9 1,179 79 0.9 1,146 
30 7.9 1,177 55 9.5 1,168 80 4.0 1,154 
31 24.9 1,182 56 1.9 1,166 81 6.4 1,158 
32 38.3 1,189 57 3.6 1,167 82 1.6 1,161 
33 24.9 1,190 58 4.6 1,166    
Node numberPeak demand (L/s)Level (m)Node numberPeak demand (L/s)Level (m)Node numberPeak demand (L/s)Level (m)
7.5 1,200 34 53.4 1,198 59 1.6 1,165 
10 12.4 1,202 35 31.3 1,198 60 0.3 1,165 
11 16.9 1,203 36 6.8 1,197 61 1.4 1,162 
12 24.1 1,205 37 28.3 1,203 62 2.3 1,163 
13 12.4 1,203 38 22.0 1,204 63 3.5 1,164 
14 24.2 1,203 39 16.6 1,201 64 0.9 1,165 
15 52.2 1,199 40 34.9 1,195 65 3.8 1,165 
16 37.3 1,195 41 15.6 1,188 66 17.3 1,165 
17 5.1 1,194 42 21.2 1,190 67 8.1 1,162 
18 8.2 1,189 43 11.8 1,187 68 5.4 1,159 
19 3.2 1,190 44 5.5 1,185 69 6.9 1,156 
20 4.5 1,194 45 1.6 1,179 70 6.3 1,154 
21 0.5 1,195 46 1.3 1,185 71 3.0 1,153 
22 1.3 1,194 47 17.1 1,185 72 0.0 1,155 
23 11.1 1,183 48 12.2 1,190 73 3.6 1,144 
24 11.2 1,174 49 8.9 1,198 74 0.7 1,143 
25 7.4 1,167 50 20.7 1,183 75 3.7 1,143 
26 12.9 1,169 51 6.4 1,178 76 0.2 1,142 
27 4.3 1,170 52 5.3 1,179 77 4.2 1,142 
28 12.0 1,175 53 2.0 1,182 78 10.0 1,146 
29 10.3 1,179 54 0.9 1,179 79 0.9 1,146 
30 7.9 1,177 55 9.5 1,168 80 4.0 1,154 
31 24.9 1,182 56 1.9 1,166 81 6.4 1,158 
32 38.3 1,189 57 3.6 1,167 82 1.6 1,161 
33 24.9 1,190 58 4.6 1,166    
Table 23

Commercially available pipe sizes and costs for Malard City

Diameter (mm)Cost ($/m)Diameter (mm)Cost ($/m)Diameter (mm)Cost ($/m)
110 10.64 300 60.11 700 320.18 
160 18.00 400 112.34 800 419.06 
200 28.57 500 174.10 900 507.39 
250 44.04 600 252.02   
Diameter (mm)Cost ($/m)Diameter (mm)Cost ($/m)Diameter (mm)Cost ($/m)
110 10.64 300 60.11 700 320.18 
160 18.00 400 112.34 800 419.06 
200 28.57 500 174.10 900 507.39 
250 44.04 600 252.02   
Figure 20

Illustration of Malard City Thiessen polygons and population density.

Figure 20

Illustration of Malard City Thiessen polygons and population density.

Close modal

Optimization and results of Malard City

In this research, the SA-VNS algorithm was applied to the Malard City network 15 times. The results of the best solutions are presented in Tables 24 and 25. The minimum, average, and maximum pressure heads achieved were 20.06, 37.64, and 59.24 m, respectively. These results indicate that the pressure heads have appropriate standard values, particularly the average pressure head. Figure 21 illustrates the relationship between the total cost and the number of objective function evaluations for Malard City. Notably, the total cost of the current network was approximately $5.136 million, whereas the optimized total cost was around $0.6799 million. This significant reduction highlights the effectiveness of the optimization. Additionally, Figure 22 compares the pressure head of the current network with that of the optimized network, including a polynomial fitting. The figure shows that the average pressure head in the optimized network decreased, which contributes to an improved lifespan for the pipes. Moreover, in the current network, 21 nodes had a pressure head higher than 60 m, whereas in the optimized network, all nodes had a pressure head of less than 60 m.
Table 24

Results of Malard City (Pipes)

Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)
160 20.18 1.00 36 160 20.57 1.02 71 110 4.68 0.49 
250 96.11 1.96 37 160 13.61 0.68 72 110 9.24 0.97 
200 39.55 1.26 38 200 19.76 0.63 73 200 7.23 0.23 
110 12.64 1.33 39 160 17.45 0.87 74 160 5.84 0.29 
160 11.36 0.56 40 250 30.00 0.61 75 110 3.49 0.37 
160 22.10 1.10 41 110 6.17 0.65 76 160 18.09 0.90 
110 12.21 1.28 42 110 0.91 0.10 77 110 7.07 0.74 
10 160 39.65 1.97 43 200 3.39 0.11 79 200 104.57 3.33 
11 160 15.49 0.77 44 160 5.44 0.27 80 200 43.42 1.38 
12 160 3.06 0.15 45 110 3.10 0.33 81 160 17.31 0.86 
13 160 29.80 1.48 46 110 14.85 1.56 82 110 22.28 2.34 
14 200 26.58 0.85 47 160 18.96 0.94 83 110 19.33 2.03 
15 110 8.78 0.92 48 200 47.33 1.51 84 160 46.25 2.30 
16 110 12.40 1.30 50 200 43.15 1.37 85 200 39.31 1.25 
17 110 3.59 0.38 51 200 32.44 1.03 86 200 15.15 0.48 
18 110 7.45 0.78 52 200 20.21 0.64 87 110 0.00 0.00 
19 160 15.07 0.75 53 160 11.33 0.56 88 160 12.18 0.61 
20 200 28.02 0.89 54 160 12.71 0.63 89 110 8.56 0.90 
21 160 32.27 1.61 55 160 12.73 0.63 90 110 7.89 0.83 
22 110 12.57 1.32 56 110 9.44 0.99 91 110 3.72 0.39 
23 110 2.25 0.24 57 160 17.93 0.89 92 110 13.37 1.41 
24 200 86.84 2.76 58 160 6.40 0.32 93 160 13.56 0.67 
26 200 64.12 2.04 59 160 17.13 0.85 94 200 10.01 0.32 
27 200 23.05 0.73 60 200 26.95 0.86 95 160 27.78 1.38 
28 160 16.19 0.81 62 200 51.43 1.64 96 200 28.68 0.91 
29 160 14.78 0.73 63 160 46.35 2.31 97 200 17.91 0.57 
30 160 8.51 0.42 65 200 99.37 3.16 98 110 14.73 1.55 
31 200 1.14 0.04 66 110 7.88 0.83 99 160 53.46 2.66 
32 110 4.98 0.52 67 160 9.43 0.47 100 160 60.25 3.00 
33 160 25.72 1.28 68 110 3.35 0.35 101 110 5.16 0.54 
34 110 5.46 0.57 69 200 0.88 0.03 102 200 32.34 1.03 
35 250 57.65 1.17 70 200 1.06 0.03     
Min velocity: 0.03 Average velocity: 1.006 Max velocity: 3.33 
Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)Pipe IDDiameter (mm)Discharge (L/s)Velocity (m/s)
160 20.18 1.00 36 160 20.57 1.02 71 110 4.68 0.49 
250 96.11 1.96 37 160 13.61 0.68 72 110 9.24 0.97 
200 39.55 1.26 38 200 19.76 0.63 73 200 7.23 0.23 
110 12.64 1.33 39 160 17.45 0.87 74 160 5.84 0.29 
160 11.36 0.56 40 250 30.00 0.61 75 110 3.49 0.37 
160 22.10 1.10 41 110 6.17 0.65 76 160 18.09 0.90 
110 12.21 1.28 42 110 0.91 0.10 77 110 7.07 0.74 
10 160 39.65 1.97 43 200 3.39 0.11 79 200 104.57 3.33 
11 160 15.49 0.77 44 160 5.44 0.27 80 200 43.42 1.38 
12 160 3.06 0.15 45 110 3.10 0.33 81 160 17.31 0.86 
13 160 29.80 1.48 46 110 14.85 1.56 82 110 22.28 2.34 
14 200 26.58 0.85 47 160 18.96 0.94 83 110 19.33 2.03 
15 110 8.78 0.92 48 200 47.33 1.51 84 160 46.25 2.30 
16 110 12.40 1.30 50 200 43.15 1.37 85 200 39.31 1.25 
17 110 3.59 0.38 51 200 32.44 1.03 86 200 15.15 0.48 
18 110 7.45 0.78 52 200 20.21 0.64 87 110 0.00 0.00 
19 160 15.07 0.75 53 160 11.33 0.56 88 160 12.18 0.61 
20 200 28.02 0.89 54 160 12.71 0.63 89 110 8.56 0.90 
21 160 32.27 1.61 55 160 12.73 0.63 90 110 7.89 0.83 
22 110 12.57 1.32 56 110 9.44 0.99 91 110 3.72 0.39 
23 110 2.25 0.24 57 160 17.93 0.89 92 110 13.37 1.41 
24 200 86.84 2.76 58 160 6.40 0.32 93 160 13.56 0.67 
26 200 64.12 2.04 59 160 17.13 0.85 94 200 10.01 0.32 
27 200 23.05 0.73 60 200 26.95 0.86 95 160 27.78 1.38 
28 160 16.19 0.81 62 200 51.43 1.64 96 200 28.68 0.91 
29 160 14.78 0.73 63 160 46.35 2.31 97 200 17.91 0.57 
30 160 8.51 0.42 65 200 99.37 3.16 98 110 14.73 1.55 
31 200 1.14 0.04 66 110 7.88 0.83 99 160 53.46 2.66 
32 110 4.98 0.52 67 160 9.43 0.47 100 160 60.25 3.00 
33 160 25.72 1.28 68 110 3.35 0.35 101 110 5.16 0.54 
34 110 5.46 0.57 69 200 0.88 0.03 102 200 32.34 1.03 
35 250 57.65 1.17 70 200 1.06 0.03     
Min velocity: 0.03 Average velocity: 1.006 Max velocity: 3.33 
Table 25

Results of Malard City (nodes)

Node IDConsumption (L/s)Pressure head (m)Node IDConsumption (L/s)Pressure head (m)Node IDConsumption (L/s)Pressure head (m)
−140.89 0.00 29 10.31 28.14 57 3.61 50.64 
−11.27 0.00 30 7.91 58.54 58 4.56 52.12 
−174.02 0.00 31 24.88 39.43 59 1.62 55.29 
−109.71 0.00 32 38.35 27.49 60 0.29 55.70 
−107.57 0.00 33 24.85 27.50 61 1.40 58.16 
−158.87 0.00 34 53.41 22.52 62 2.34 57.11 
−130.02 0.00 35 31.32 34.68 63 3.49 55.90 
−17.54 8.00 36 6.78 34.88 64 0.90 53.14 
7.55 49.91 37 28.30 42.81 65 3.84 52.62 
10 12.39 52.45 38 22.02 28.72 66 17.31 51.00 
11 16.92 40.22 39 16.55 28.32 67 8.10 37.98 
12 24.06 25.43 40 34.88 31.26 68 5.42 30.56 
13 12.43 23.95 41 15.63 41.33 69 6.94 23.37 
14 24.21 23.90 42 21.25 36.47 70 6.25 23.17 
15 52.19 20.06 43 11.75 34.10 71 2.98 23.93 
16 37.30 21.49 44 5.54 35.83 72 0.00 21.93 
17 5.15 33.34 45 1.55 59.24 73 3.62 26.12 
18 8.19 32.48 46 1.27 54.57 74 0.67 25.28 
19 3.22 35.56 47 17.09 57.97 75 3.72 21.95 
20 4.51 40.85 48 12.23 45.50 76 0.19 24.32 
21 0.53 45.49 49 8.89 34.60 77 4.20 24.65 
22 1.28 47.44 50 20.74 36.38 78 10.01 20.41 
23 11.06 23.14 51 6.39 46.29 79 0.90 26.95 
24 11.22 29.35 52 5.26 41.63 80 3.96 22.90 
25 7.45 28.84 53 2.05 38.60 81 6.39 32.08 
26 12.95 41.96 54 0.95 41.57 82 1.63 39.43 
27 4.25 42.19 55 9.54 49.64    
28 12.00 51.06 56 1.94 51.64    
Min pressure: 20.06 Average pressure: 37.641 Max pressure: 59.24 
Node IDConsumption (L/s)Pressure head (m)Node IDConsumption (L/s)Pressure head (m)Node IDConsumption (L/s)Pressure head (m)
−140.89 0.00 29 10.31 28.14 57 3.61 50.64 
−11.27 0.00 30 7.91 58.54 58 4.56 52.12 
−174.02 0.00 31 24.88 39.43 59 1.62 55.29 
−109.71 0.00 32 38.35 27.49 60 0.29 55.70 
−107.57 0.00 33 24.85 27.50 61 1.40 58.16 
−158.87 0.00 34 53.41 22.52 62 2.34 57.11 
−130.02 0.00 35 31.32 34.68 63 3.49 55.90 
−17.54 8.00 36 6.78 34.88 64 0.90 53.14 
7.55 49.91 37 28.30 42.81 65 3.84 52.62 
10 12.39 52.45 38 22.02 28.72 66 17.31 51.00 
11 16.92 40.22 39 16.55 28.32 67 8.10 37.98 
12 24.06 25.43 40 34.88 31.26 68 5.42 30.56 
13 12.43 23.95 41 15.63 41.33 69 6.94 23.37 
14 24.21 23.90 42 21.25 36.47 70 6.25 23.17 
15 52.19 20.06 43 11.75 34.10 71 2.98 23.93 
16 37.30 21.49 44 5.54 35.83 72 0.00 21.93 
17 5.15 33.34 45 1.55 59.24 73 3.62 26.12 
18 8.19 32.48 46 1.27 54.57 74 0.67 25.28 
19 3.22 35.56 47 17.09 57.97 75 3.72 21.95 
20 4.51 40.85 48 12.23 45.50 76 0.19 24.32 
21 0.53 45.49 49 8.89 34.60 77 4.20 24.65 
22 1.28 47.44 50 20.74 36.38 78 10.01 20.41 
23 11.06 23.14 51 6.39 46.29 79 0.90 26.95 
24 11.22 29.35 52 5.26 41.63 80 3.96 22.90 
25 7.45 28.84 53 2.05 38.60 81 6.39 32.08 
26 12.95 41.96 54 0.95 41.57 82 1.63 39.43 
27 4.25 42.19 55 9.54 49.64    
28 12.00 51.06 56 1.94 51.64    
Min pressure: 20.06 Average pressure: 37.641 Max pressure: 59.24 
Figure 21

Relationship between number of objective function evaluations and total cost (Malard City).

Figure 21

Relationship between number of objective function evaluations and total cost (Malard City).

Close modal
Figure 22

Comparison between current and optimized pressure head of Malard City network (poly. means polynomial trendline).

Figure 22

Comparison between current and optimized pressure head of Malard City network (poly. means polynomial trendline).

Close modal

In practical applications, the SA-VNS algorithm may face challenges such as missing data, which can result in incomplete or inaccurate model inputs and, consequently, affect the optimization process. A potential solution to this issue is the use of imputation techniques, which estimate missing values based on observed data, thereby ensuring a more reliable and consistent dataset. One fundamental challenge of the SA-VNS algorithm, as with all heuristic algorithms, is tuning and determining parameter values, especially for real-world problems. This challenge can be effectively addressed through the DOE and sensitivity analysis. Additionally, incorporating robust statistical methods can help mitigate the impact of missing data on the final solution. Another challenge is selecting the appropriate model parameters, which are crucial for the algorithm's performance. Relying solely on trial-and-error methods can lead to suboptimal parameter settings and increased computational costs. To overcome this issue, systematic methods such as the Taguchi DOE can be valuable. DOE facilitates efficient exploration of parameter spaces by reducing the number of required experiments while ensuring the identification of the optimal parameter combination.

For real-world applications, dynamic parameter tuning can also be advantageous. This approach adjusts parameters during the optimization process based on feedback from the algorithm's performance, allowing for better adaptability to varying problem conditions. Implementing these methods can enhance the resilience and effectiveness of the SA-VNS algorithm in handling complex, real-world WDNs optimization problems.

In this research, a novel Evolutionary Algorithm called ‘SA-VNS’ was developed for optimizing WDNs. This algorithm introduces a unique local search strategy and significantly enhances efficiency, cost reduction, and consistency compared to previous methods. A notable feature of SA-VNS is the γ coefficient, which controls the number of pipes subjected to diameter reduction after sorting. Through extensive experimentation, the optimal reduction strategy for each pipe diameter was determined. Unlike traditional trial-and-error methods for parameter tuning, this study leveraged advanced statistical analysis tools to precisely adjust the algorithm's parameters. These tools proved essential in identifying the optimal settings for networks of varying sizes, ensuring the algorithm's adaptability to both small and large-scale networks. The SA-VNS algorithm was rigorously tested on multiple benchmark networks, with numerous trials conducted for each to determine optimal pipe diameters, costs, and performance consistency.

The results demonstrated that SA-VNS outperforms previous optimization techniques, delivering lower costs and enhanced stability. The algorithm was also applied to a real-world case in Malard City, Iran, where it successfully addressed network rehabilitation needs. The SA-VNS approach not only maintained adequate pressure distribution but also achieved significant cost savings. Tools such as Geographic Information Systems (GIS) and the Thiessen polygon method were used for accurate node demand estimation, facilitating effective optimization. Despite these advancements, the study could benefit from a more detailed exploration of the local search mechanism and its interaction with other algorithmic parameters. Understanding this interaction more thoroughly would offer valuable insights into the local search's contribution to overall performance.

Additionally, the research indicates that future work could investigate the algorithm's adaptability to other network configurations and explore hybrid optimization techniques. For example, combining GA with variable neighbourhood descent (VND) could be a promising direction for WDN optimization. Moreover, SA-VNS has the potential to address other complex infrastructure optimization problems beyond water networks. Future studies should provide greater clarity on the function of the γ coefficient and include more detailed comparative analyses to enhance the understanding and robustness of the algorithm. The practical use of GIS for demand estimation highlights the real-world impact of SA-VNS, and expanding its application to other systems could further demonstrate its utility in solving complex optimization challenges.

H. J. wrote the original draft, arranged the software, investigated the process, and developed the methodology. A. H. conceptualized the whole article, validated the data, and supervised the work. Mahtab Tavakoli Moghadam: Collaboration in model implementation, text editing, and specialized suggestions.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent was obtained from all subjects involved in the study.

All relevant data are included in the paper.

The authors declare there is no conflict.

1

All experimental benchmarks and the results can be found at https://github.com/Jandaghi/SA-VNS-WDN.

Abou Rayan
M.
,
Djebedjian
B.
,
El-Hak
N. G.
&
Herrick
A.
(
2003
). '
Optimization of potable water network (case study)
',
7th Int. Water Technology Conference
.
Alexandria, Egypt: International Water Technology Association
, pp.
507
522
.
Adedeji
K. B.
&
Hamam
Y.
(
2020
)
Cyber-physical systems for water supply network management: basics, challenges, and roadmap
.
Sustainability
,
12
,
9555
.
https://doi.org/10.3390/su12229555
.
Alperovits
E.
&
Shamir
U.
(
1977
)
Design of optimal water distribution systems
,
Water Resources Research
,
13
(
6
),
885
900
.
Bullnheimer
B.
,
Hartl
R. F.
&
Strauss
C.
(
1999
)
A new rank based version of the ant system. A computational study
.
Central European Journal of Operations Research
7
(
1
).
Dandy
G. C.
,
Simpson
A. R.
&
Murphy
L. J.
(
1996
)
An improved genetic algorithm for pipe network optimization
,
Water Resources Research
,
32
(
2
),
449
458
.
Dorigo
M.
,
Maniezzo
V.
&
Colorni
A.
(
1996
)
Ant system: optimization by a colony of cooperating agents
,
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
,
26
(
1
),
29
41
.
El-Ghandour
H. A.
&
Elbeltagi
E.
(
2018
)
Comparison of five evolutionary algorithms for optimization of water distribution networks
,
Journal of Computing in Civil Engineering
,
32
(
1
),
4017066
.
Eusuff
M. M.
&
Lansey
K. E.
(
2003
)
Optimization of water distribution network design using the shuffled frog leaping algorithm
,
Journal of Water Resources Planning and Management
,
129
(
3
),
210
225
.
Ezzeldin
R. M.
&
Djebedjian
B.
(
2020
)
Optimal design of water distribution networks using whale optimization algorithm
,
Urban Water Journal
,
17
(
1
),
14
22
.
https://doi.org/10.1080/1573062X.2020.1734635
.
Ezzeldin
R.
,
Djebedjian
B.
&
Saafan
T.
(
2014
)
Integer discrete particle swarm optimization of water distribution networks
,
Journal of Pipeline Systems Engineering and Practice
,
5
(
1
),
4013013
.
Geem
Z.
(
2009
)
Particle-swarm harmony search for water network design
,
Engineering Optimization
,
41
(
4
),
297
311
.
https://doi.org/10.1080/03052150802449227
.
Goulter
I. C.
,
Lussier
B. M.
&
Morgan
D. R.
(
1986
)
Implications of head loss path choice in the optimization of water distribution networks
,
Water Resources Research
,
22
(
5
),
819
822
.
Hansen
P.
,
Mladenović
N.
&
Moreno Pérez
J. A.
(
2010
)
Variable neighbourhood search: methods and applications
,
Annals of Operations Research
,
175
(
1
),
367
407
.
https://doi.org/10.1007/s10479-009-0657-6
.
Jandaghi
H.
,
Divsalar
A.
&
Emami
S.
(
2021
)
The categorized orienteering problem with count-dependent profits
,
Applied Soft Computing
,
113
,
107962
.
https://doi.org/10.1016/j.asoc.2021.107962
.
Kim
J. H.
&
Mays
L. W.
(
1994
)
Optimal rehabilitation model for water-distribution systems
,
Journal of Water Resources Planning and Management
,
120
(
5
),
674
692
.
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:5(674)
.
Maier
H. R.
,
Simpson
A. R.
,
Zecchin
A. C.
,
Foong
W. K.
,
Phang
K. Y.
,
Seah
H. Y.
&
Tan
C. L.
(
2003
)
Ant colony optimization for design of water distribution systems
,
Journal of Water Resources Planning and Management
,
129
(
3
),
200
209
.
Moosavian
N.
&
Lence
B. J.
(
2019
)
Fittest individual referenced differential evolution algorithms for optimization of water distribution networks
,
Journal of Computing in Civil Engineering
,
33
(
6
),
4019036
.
Naveen Naidu
M.
,
Boindala
P. S.
,
Vasan
A.
&
Varma
M. R. R.
(
2020
)
Optimization of water distribution networks using cuckoo search algorithm
. In: Kacprzyk, J. (ed.)
Advances in Intelligent Systems and Computing
, Vol.
949
.
Singapore:
Springer Singapore
.
https://doi.org/10.1007/978-981-13-8196-6_7
.
Pankaj
B. S.
,
Naidu
M. N.
,
Vasan
A.
&
Varma
M. R.
(
2020
)
Self-adaptive cuckoo search algorithm for optimal design of water distribution systems
,
Water Resources Management
,
34
(
10
),
3129
3146
.
https://doi.org/10.1007/s11269-020-02597-2
.
Praneeth
P.
,
Vasan
A.
&
Raju
K. S.
(
2019
)
Pipe size design optimization of water distribution networks using water cycle algorithm
. In:
(Yadav, N., Yadav, A., Bansal, J. C., Deep, K. & Kim, J. H., eds.)
Harmony Search and Nature Inspired Optimization Algorithms
,
Singapore
:
Springer Singapore
, pp.
1057
1067
.
Samani
H. M. V.
&
Zanganeh
A.
(
2010
)
Optimisation of water networks using linear programming
,
Proceedings of the Institution of Civil Engineers-Water Management
,
163
,
475
485
.
Sampaio
P. R.
,
Caradot
N.
,
Guilbert
A.-S.
&
Parez
V.
(
2024
)
A multiobjective optimization approach for wastewater network long-term rehabilitation planning: a case study
,
Water Practice & Technology
,
19
(
1
),
1
19
.
Savic
D. A.
&
Walters
G. A.
(
1997
)
Genetic algorithms for least-cost design of water distribution networks
,
Journal of Water Resources Planning and Management
,
123
(
2
),
67
77
.
Schaake
J. C.
&
Lai
F. H.
(
1969
)
Linear Programming and Dynamic Programming Application to Water Distribution Network Design
.
Cambridge, MA, USA:
MIT Hydrodynamics Laboratory
.
Sedki
A.
&
Ouazar
D.
(
2012
)
Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems
,
Advanced Engineering Informatics
,
26
(
3
),
582
591
.
https://doi.org/10.1016/j.aei.2012.03.007
.
Simpson
A. R.
,
Dandy
G. C.
&
Murphy
L. J.
(
1994
)
Genetic algorithms compared to other techniques for pipe optimization
,
Journal of Water Resources Planning and Management
,
120
(
4
),
423
443
.
Suribabu
C. R.
&
Neelakantan
T. R.
(
2006
)
Design of water distribution networks using particle swarm optimization
,
Urban Water Journal
,
3
(
2
),
111
120
.
https://doi.org/10.1080/15730620600855928
.
Thiessen
A. H.
(
1911
)
Precipitation averages for large areas
,
Monthly Weather Review
,
39
(
7
),
1082
1089
.
Zecchin
A. C.
,
Simpson
A. R.
,
Maier
H. R.
&
Nixon
J. B.
(
2005
)
Parametric study for an ant algorithm applied to water distribution system optimization
,
IEEE Transactions on Evolutionary Computation
,
9
(
2
),
175
191
.
Zecchin
A. C.
,
Simpson
A. R.
,
Maier
H. R.
,
Leonard
M.
,
Roberts
A. J.
&
Berrisford
M. J.
(
2006
)
Application of two ant colony optimisation algorithms to water distribution system optimisation
,
Mathematical and Computer Modelling
,
44
(
5
),
451
468
.
https://doi.org/10.1016/j.mcm.2006.01.005
.
Zecchin
A. C.
,
Maier
H. R.
,
Simpson
A. R.
,
Leonard
M.
&
Nixon
J. B.
(
2007
)
Ant colony optimization applied to water distribution system design: comparative study of five algorithms
,
Journal of Water Resources Planning and Management
,
133
(
1
),
87
92
.
Zhou
X.
,
Gao
D. Y.
&
Simpson
A. R.
(
2016
)
Optimal design of water distribution networks by a discrete state transition algorithm
,
Engineering Optimization
,
48
(
4
),
603
628
.
https://doi.org/10.1080/0305215X.2015.1025775
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data