The aim was to review the methodologies used in the concentration of intestinal parasites in different water samples in Latin America. The period of the review was between September and November 2022. Of the total number of articles (N = 87), the search engine with the most articles matching the specified keywords was Google Scholar (56.3% = 49 articles), and Brazil was the country that published the most articles (28.7%). Most of the studies were conducted for surface waters (75.9%) and used methodologies with physical separation without subsequent parasitological concentration (76.9%). However, the ultrafiltration method (UFM) with subsequent parasitological concentration recovered a greater number and type of parasite species. The descriptive study of the review shows that the procedure of using UFM with a parasitological method of flotation and sedimentation would allow an efficient concentration of the parasite species present in the water sample.

  • The variety of parasitological concentration techniques for water samples hinders the possibility to identify and highlight a universal methodology.

  • In Latin America, most of the articles utilized methodologies with a physical separation without subsequent parasitological concentration.

  • The ultrafiltration method with subsequent parasitological concentration recovered a greater number and type of parasite species.

In parasitological studies of human and animal health, knowledge of environmental sanitation is essential for a comprehensive view of the parasitic epidemiology (FAO/OIE/WHO 2009). In Latin America, the availability of water and sanitation services is limited, making access to safe drinking water difficult (Jouravlev et al. 2021). Ruiz-Taborda et al. (2018) found that the region shows a synergistic relationship between parasitic infections and socio-environmentally vulnerable living conditions. In this regard, water sources become contaminated with intestinal parasites when infected humans or animals discharge the different infecting forms with excreta (cysts, oocysts, eggs, larvae) in water bodies due to inadequate sanitary infrastructure, which spreads the different infective stages of parasites throughout the environment (Chalmers et al. 2020).

Cryptosporidium spp. and Giardia spp. are the most frequently identified waterborne parasite species around the world (Efstratiou et al. 2017; Bourli et al. 2023). Giardia spp. cysts and Cryptosporidium spp. oocysts have been reported together in epidemiological outbreaks caused by consumption of treated water mainly due to their resistance to chlorine (Efstratiou et al. 2017; Silva & Sabogal-Paz 2021). In Latin America, soil-transmitted nematodes are present throughout the region and are deemed to increase the probability of water contamination (surface water, groundwater) due to their biological cycle and the lack of adequate sanitary infrastructure (Saboyá et al. 2013; Mahapatra et al. 2022). In this regard, studies on parasitological water quality have found protozoa and geohelminths together (Cacciabue et al. 2014; de Freitas et al. 2015; Martínez & Caicedo 2016; Silva et al. 2017; Traviezo et al. 2017).

The design of the study and the methodologies to be applied in parasitological analyses of environmental samples are important considerations to obtain acceptable results and know the real state of the environmental health (Falcone 2021). However, the methods used for parasitological diagnosis in water present discrepancies, which have an impact on the selection of the diagnostic method and evaluation of its efficacy. It should be highlighted that the waterborne and foodborne disease surveillance systems in this region focus on the detection of bacteria as indicators of contamination, and there are few controls for the identification of parasite species (Gilardi et al. 2018; Chalmers et al. 2020).

In this context, the aim of this study was to review the available information on parasitological analyses carried out on water samples in Latin America in the period from 2000 to 2022. This review will optimize the possibilities of concentrating parasitic forms in water samples from the region and provide scientific knowledge to support public health and food safety policy management processes.

Study design

The methodologies used in Latin America for the diagnosis of parasitic species in water samples were manually recovered from specific bibliographies. Data were systematically collected from three databases: Google Scholar, PubMed, and SciELO Argentina. The search was performed using the following combination of keywords in Spanish, Portuguese, and English: ‘parásitos’ or ‘parasitas’ or ‘parasites’ + ‘agua’ or ‘water’ + ‘Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay or Venezuela’. The bibliographic study comprised the period from 2000 to 2022, and the data were organized and analyzed in MS Excel data sheets between September and November 2022.

Inclusion and exclusion criteria

Inclusion was based on whether they were original articles and short communications published in journals with ISSN. If more than one report of the same study was published, only one was included in its native language. Experimental and field studies were included in the analysis, but not bibliographic reviews, theses, repositories, and conferences. Only articles identifying species were included, and these were named in general terms, i.e. only at the genus level.

Scientific publication in the Latin America

Of the total number of countries, 11 had matched with the specified keywords (55% = 11/20). In the comprehensive literature reviewed, 87 articles corresponding to the specified keywords were located from three academic search engines (Basualdo et al. 2000; Quintero-Betancourt & Botero de Ledesma 2000; Abramovich et al. 2001; Franco et al. 2001; Franco & Cantusio Neto 2002; Luna et al. 2002; Lura et al. 2002; Cinco et al. 2003; Dowd et al. 2003; Kato et al. 2003; Lopez et al. 2003; Cifuentes et al. 2004; Hachich et al. 2004; Alarcón et al. 2005; Chaidez et al. 2005; Costamagna et al. 2005; Ryu et al. 2005; de Moura et al. 2006; Guzmán-Quintero et al. 2007; Campos-Pinilla et al. 2008; Cermeño et al. 2008; Balthazard-Accou et al. 2009; Bracho et al. 2009; Gamboa et al. 2009; Machado et al. 2009; Mota et al. 2009; Betancourt et al. 2010; Mora et al. 2010; Neto et al. 2010; Razzolini et al. 2010; Araújo et al. 2011; Brasseur et al. 2011; Olivas-Enriquez et al. 2011; Razzolini et al. 2011; Xavier et al. 2011; Betancourt & Mena 2012; Poma et al. 2012; Rodríguez et al. 2012; Damiani et al. 2013; Guillen et al. 2013; Guzmán et al. 2013; Olivas Enríquez et al. 2013; Osaki et al. 2013; Sato et al. 2013; Cacciabue et al. 2014; da Silva Barbosa et al. 2014; de Paiva Barçante et al. 2014; Gallego Jaramillo et al. 2014; Verant et al. 2014; Balderrama-Carmona et al. 2015; Campos-Almeida et al. 2015; de Freitas et al. 2015; Juárez et al. 2015; Rodriguez-Alvarez et al. 2015; Tiyo et al. 2015; Lora-Suarez et al. 2016; Martínez & Caicedo, 2016; Rey et al. 2016; Santos et al. 2016; Triviño-Valencia et al. 2016; Vielma et al. 2016; Balthazard-Accou et al. 2017; Grothen et al. 2017; Hernandez-Cortazar et al. 2017; Palacios 2017; Silva et al. 2017; Toledo et al. 2017; Traviezo et al. 2017; Bautista et al. 2018; de Araújo et al. 2018; Sánchez et al. 2018; Arocha et al. 2019; Bataiero et al. 2019; Delgado Vargas et al. 2019; Hernández et al. 2019; Borja-Serrano et al. 2020; Breternitz et al. 2020; González-Ramírez et al. 2020; Norberg et al. 2020; Prato-Moreno et al. 2020; Campo-Portacio et al. 2021; de Almeida Mendonça et al. 2021; González-Fernández et al. 2021; Morales et al. 2022; Morales-Mora et al. 2022; Scherer et al. 2022). Of these, 72.4% (63 articles) were exclusively identified in one search engine, 24.1% (21 articles) were retrieved in two search engines, and 3.5% (3 articles) were located in all three search engines. Specifically, 16.1% (14 articles) were located on PubMed, while a substantial 56.3% (49 articles) were located through Google Scholar. In addition, 2.3% (2 articles) were found in PubMed and SciELO, 20.7% (18 articles) in PubMed and Google Scholar, 1.2% (1 article) in Google Scholar and SciELO, and 3.5% (3 articles) were concurrently present in PubMed, Google Scholar, and SciELO.

Keywords in English were the most frequent combination, 60.9% (53/87), followed by keywords in Spanish, 35.6% (31/87), and to a lesser extent in Portuguese, 3.4% (3/87). Brazil was the country that published the majority of the articles with a percentage of 28.7% (25/87), followed by Venezuela and Mexico, with 14.9% (13/87) and 12.6% (11/87), respectively, (Table 1). Argentina was in the fourth place with 10.3% (9/87), and similar percentages were found in Colombia with 9.2% (8/87) and Costa Rica with 8% (7/87). The rest of the countries showed percentages that varied between 1 and 5.5% (Supplementary Table 1).

Table 1

Studies on parasitological analysis of water samples in Latin America

CountryFrequency % (n/N)PubMedSciELOGoogle ScholarSPPOEN
Argentina 10.3 (9/87) 
Brazil 28.4 (25/87) 14 16 22 
Colombia 9.2 (8/87) 
Costa Rica 4.6 (4/87) 
Ecuador 8 (7/87) 
Guatemala 1.1 (1/87) 
Haiti 5.7 (5/87) 
Mexico 12.6 (11/87) 
Peru 2.3 (2/87) 
Uruguay 2.3 (2/87) 
Venezuela 14.9 (13/87) 12 
CountryFrequency % (n/N)PubMedSciELOGoogle ScholarSPPOEN
Argentina 10.3 (9/87) 
Brazil 28.4 (25/87) 14 16 22 
Colombia 9.2 (8/87) 
Costa Rica 4.6 (4/87) 
Ecuador 8 (7/87) 
Guatemala 1.1 (1/87) 
Haiti 5.7 (5/87) 
Mexico 12.6 (11/87) 
Peru 2.3 (2/87) 
Uruguay 2.3 (2/87) 
Venezuela 14.9 (13/87) 12 

EN: English; PO: Portuguese; SP: Spanish.

Microbiological concentration techniques

The studies are diverse in terms of their aims, their designs, and the techniques implemented. The articles focus on the search for species and could be experimental or for the evaluation of pathogens in general. In this sense, the articles surveyed vary in the type and volume of the water sample studied (DW: drinking water; SW: surface water; GW: groundwater), as well as in the concentration technique implemented. However, taking into account of these limitations, it is possible to reach common considerations in their analysis.

Most of the studies were conducted in surface water (SW: 75.9% = 66/87), being the type of sample in over half of the articles surveyed (68.2% = 45/66). In particular, these studies were realized in places where there was possible fecal contamination, such as rivers adjacent to agricultural activities. The second most analyzed type of sample was drinking water, which was found in a similar percentage as in the articles analyzing drinking and surface water samples (DW: 19.5% = 15/87 and DW-SW: 17.2% = 15/87, respectively). Groundwater was found in very low percentages when analyzed separately, or with samples of surface water and/or drinking water (GW: 10.3% = 9/87, SW-GW: 3.4% = 3/87, and DW-SW-GW: 4.6% = 4/87, respectively). The low frequency of parasitological studies of groundwater compared to drinking water confirms the need for further environmental studies to determine the source of parasitological infection that would explain the high prevalence observed in populations living in rural areas compared to urban areas in Latin America (Pincay et al. 2022).

Parasitological concentration is an enrichment technique to concentrate oocysts, cysts, eggs, and larvae of parasites in the smallest sample volume and to determine their presence and identification (Falcone 2021). Most of the articles utilized methodologies with physical separation by some type of filtration or centrifugation (89.6% = 78/87) without subsequent parasitological concentration (76.9% = 60/78). Of the total number of articles that applied a parasitological enrichment technique (32.2% = 28/87), 67.9% (19/28) used flotation with saturated sucrose solution. Among the physical methods of separation, the majority, 63.2% (55/87), used filtration with separation by membranes with a pore diameter of ≥0.22 μm, while 4.6% (4/87) used the ultrafiltration methodology, a method adopted also to recover viruses (Poma et al. 2012; Cacciabue et al. 2014; Juárez et al. 2015; González-Fernández et al. 2021). Organic and inorganic flocculation methods were used to a lesser extent (10.3% = 9/87), which could be related to the infrastructure needed and the cost to implement these methodologies in the region. Moreover, these methodologies recovered a lower number and type of species compared to those that used some method of filtration.

The methodologies frequently used for parasite diagnosis varied from study to study. The methodology identified as being of general use was optical microscopy (OM). Specific methodologies were also identified such as DAPI (4′,6-diamidino-2-phenylindole) staining and immunofluorescence base microscopy (IMF), ELISA, and the different variations of the polymerase chain reaction (PCR) molecular technique. Moreover, the techniques OM, IMF, ELISA, and PCR were recognized in some studies to be the only methods of diagnosis (29.89% = 26/87, 28.74% = 25/87, 2.30% = 2/87, and 10.34% = 9/87, respectively). The use of species-specific diagnostic methodologies was also reported in 65.5% (57/87), and the number of species found varied from one to five. On the other hand, 31 out of 87 papers used OM as the diagnostic methodology, finding between 1 and 14 different species. Only two articles that employed the general and specific methodologies for parasitological diagnosis identified between eight and 12 different species.

Table 2

Parasitic protozoan species identified in the articles

Parasite species% Species (n species/N studies × 100)
Protozoa (+Blastocystis spp.) 83 (200/241) 
Blastocystis spp. 18.4 (16/87) 
Amoebas 36.8 (32/87) 
Acanthamoeba sp. 1.1 (1/87) 
Entamoeba spp. (Entamoeba coli, Entamoeba histolytica, Entamoeba dispar18.4 (16/87) 
Endolimax nana 13.8 (12/87) 
Iodamoeba sp. 3.4 (3/87) 
Flagellates 82.7 (72/87) 
Giardia spp. 67.8 (59/87) 
Trichomonas sp. 2.3 (2/87) 
Dientamoeba sp. 2.3 (2/87) 
Chilomastix mesnili 6.9 (6/87) 
Apicomplexa 89.6 (78/87) 
Eimeria spp. 2.3 (2/87) 
Cryptosporidium spp. 70.1 (61/87) 
Cyclospora sp. 8 (7/87) 
Toxoplasma gondii 9.2 (8/87) 
Ciliates 5.7 (5/87) 
Balantidium coli 5.7 (5/87) 
Parasite species% Species (n species/N studies × 100)
Protozoa (+Blastocystis spp.) 83 (200/241) 
Blastocystis spp. 18.4 (16/87) 
Amoebas 36.8 (32/87) 
Acanthamoeba sp. 1.1 (1/87) 
Entamoeba spp. (Entamoeba coli, Entamoeba histolytica, Entamoeba dispar18.4 (16/87) 
Endolimax nana 13.8 (12/87) 
Iodamoeba sp. 3.4 (3/87) 
Flagellates 82.7 (72/87) 
Giardia spp. 67.8 (59/87) 
Trichomonas sp. 2.3 (2/87) 
Dientamoeba sp. 2.3 (2/87) 
Chilomastix mesnili 6.9 (6/87) 
Apicomplexa 89.6 (78/87) 
Eimeria spp. 2.3 (2/87) 
Cryptosporidium spp. 70.1 (61/87) 
Cyclospora sp. 8 (7/87) 
Toxoplasma gondii 9.2 (8/87) 
Ciliates 5.7 (5/87) 
Balantidium coli 5.7 (5/87) 

Of the total number of articles evaluated, 26 different species of parasites, 14 species of protozoa (+Blastocystis spp.), 7 species of nematodes, and 5 species of flatworms were identified. Of the articles surveyed, protozoan species alone were found in 83.9% (73/87), while both protozoa and nematodes were reported in the remaining 16.1% (14/87). The species that were usually concentrated were the protozoa Cryptosporidium spp. (70.1% = 61/87) and Giardia spp. (67.8% = 59/87). Other parasites reported were Blastocystis spp. (18.4% = 16/87), Toxoplasma gondii (9.2% = 8/87), Cyclospora sp. (8% = 7/87), Balantidium coli (5.7% = 5/87), and Trichomonas sp. (2.3% = 2/87). Among the commensal species Entamoeba spp. (18.4% = 16/87) and Endolimax nana (13.8% = 12/87) were the most frequent. In the helminths, Enterobius spp. and Trichuris sp. were occasionally reported (8% = 7/87 and 6.9% = 6/87, respectively), as well as geohelminths Ascaris spp. (6.9% = 6/87), Trichostrongylus sp. (5.7% = 5/87), and species of the family Ancylostomidae (4.6% = 4/87). Among the flatworms, Fasciola hepatica was identified (2.3% = 2/87), and the most frequent cestode species was Hymenolepis spp. (5.7% = 5/87) (Tables 2 and 3).

Table 3

Parasite species of nematodes and platyhelminths identified in the articles

Parasite species% Species (n species/N studies × 100)
Nematodes 12.9 (31/241) 
Helminths 14.9 (13/87) 
Enterobius spp. 8 (7/87) 
Trichuris sp. 6.9 (6/87) 
Geohelminths 20.7 (18/87) 
Ascaris spp. 6.9 (6/87) 
 Ancylostomideos (Ancylostoma sp./Necator americanus4.6 (4/87) 
Strongyloides spp. 2.3 (2/87) 
Toxocara sp. 1.1 (1/87) 
Trichostrongylus sp. 5.7 (5/87) 
Plathelminths 4.1 (10/241) 
Trematodes 2.3 (2/87) 
Fasciola hepatica 2.3 (2/87) 
Cestodes 8 (8/87) 
Taenia sp. 1.1 (1/87) 
Dipylidium caninum 1.1 (1/87) 
Echinococcus granulosus 1.1 (1/87) 
Hymenolepis spp. 5.7 (5/87) 
Parasite species% Species (n species/N studies × 100)
Nematodes 12.9 (31/241) 
Helminths 14.9 (13/87) 
Enterobius spp. 8 (7/87) 
Trichuris sp. 6.9 (6/87) 
Geohelminths 20.7 (18/87) 
Ascaris spp. 6.9 (6/87) 
 Ancylostomideos (Ancylostoma sp./Necator americanus4.6 (4/87) 
Strongyloides spp. 2.3 (2/87) 
Toxocara sp. 1.1 (1/87) 
Trichostrongylus sp. 5.7 (5/87) 
Plathelminths 4.1 (10/241) 
Trematodes 2.3 (2/87) 
Fasciola hepatica 2.3 (2/87) 
Cestodes 8 (8/87) 
Taenia sp. 1.1 (1/87) 
Dipylidium caninum 1.1 (1/87) 
Echinococcus granulosus 1.1 (1/87) 
Hymenolepis spp. 5.7 (5/87) 

The study of the articles reviewed shows that the ultrafiltration method (UFM) with a pore diameter of less than 1 μm recovered the greatest number of different species (20.1% = 18/87). The UFM was first evaluated in samples of drinking water; SW, and groundwater (Oshima 2001; Morales-Morales et al. 2003). Oshima (2001) utilized a first step of blocking the filter with fetal bovine serum for 24 h and subsequently, several authors complemented UFM with a second step of concentration by centrifugation (Hill et al. 2009; Rhodes et al. 2011; Liu et al. 2012; Kahler et al. 2015; Kimble et al. 2015; Rangel-Martínez et al. 2015). Rajal et al. (2007) introduced modifications to the UFM methodology to determine the viral quality of aquatic environments. Among the adaptations, the authors eliminated the filter-blocking step before UFM and observed a decrease in the sample processing time with a similar percentage of recovery.

Poma et al. (2012) and Cacciabue et al. (2014) adopted the UFM to study smaller volumes of water samples. In fact, the sample volume was adjusted from 100 to 20 L to evaluate the virological and parasitological quality of SW. Also, Poma et al. (2012) performed a second step of concentration by passing the sample through a gauze, followed by the treatment with Sheather's flotation solution and Charles Barthelemy's method. This allowed them to concentrate several parasites, such Balantidium coli, Blastocystis spp., Giardia spp., Cyclospora sp., Trichomonas sp., Dientamoeba sp., Enteromonas hominis, Endolimax nana, Enterobius spp., Ascaris spp., Hymenolepis spp., Necator americanus, Strongyloides spp., Trichuris sp., Dipylidium caninum, Trichostrongylus sp., and Fasciola hepatica, including those less than 6 μm in size, such as Microsporidium and Cryptosporidium spp.

It is important to highlight that intestinal parasites are found in low concentrations in the environment, and the smaller sample volume may affect the availability of microorganisms or DNA for molecular methodologies (Juárez & Rajal 2013). In this regard, Juárez et al. (2015) evaluated the quality of samples of groundwater for human consumption and increased the sample volume to 60 L. They also carried out a secondary concentration process involving spontaneous sedimentation, which allowed them to concentrate parasites of smaller sizes, such as Chilomastix mesnili and Giardia spp. These adaptations could explain the differences observed in the number and type of parasite species concentrated with this method in the mentioned articles. In addition, differences between the number of protozoan (+Blastocystis spp.) and nematode species could be due to intrinsic morphological characteristics related to the adaptation of resistant forms of protozoa, oocysts, and cysts to adverse environmental conditions (Hassan et al. 2021; Unzaga & Zonta 2023).

The present review highlights the techniques available for parasite concentration from three types of water samples (DS, WS, and GW) in Latin America. The UFM method recovered the highest number and the type of parasite species. The descriptive study of the review shows that the procedure of using UFM with a parasitological method of flotation and sedimentation would allow an efficient concentration of the parasite species present in the water sample. However, the differences in the types and volumes of samples, protocols, and study designs expose the need for further study under controlled conditions that allow comparison of the techniques implemented to strengthen the analysis and arrive at an effective and efficient technique for the study of parasites in water. On the other hand, diagnosis of any type of sample should be performed in a complementary manner using microscopy and PCR-based methodologies.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Abramovich
B. L.
,
Gilli
M. I.
,
Haye
M. A.
,
Carrera
E.
,
Lura
M. C.
,
Nepote Gómez
P. A.
,
Vaira
S.
&
Contini
L.
2001
Cryptosporidium y Giardia en aguas superficiales
.
Revista Argentina de Microbiología
33
(
3
),
167
176
.
Araújo
R. S.
,
Dropa
M.
,
Fernandes
L. N.
,
Carvalho
T. T.
,
Sato
M. I. Z.
,
Soares
R. M.
,
Matté
G. R.
&
Matté
M. H.
2011
Genotypic characterization of Cryptosporidium hominis from water samples in São Paulo, Brazil
.
The American Journal of Tropical Medicine and Hygiene
85
(
5
),
834
.
Arocha
R.
,
Álvarez
G.
,
Sánchez
G.
,
Roche
J.
&
Traviezo
L.
2019
Protozoarios en agua y dolencias, en la población de Ologá y Congo Mirador, Lago de Maracaibo, Venezuela
.
Revista Venezolana de Salud Pública
7
(
2
),
41
46
.
ISSN-e 2343-5534, ISSN 2343-5526
.
Balderrama-Carmona
A. P.
,
Gortáres-Moroyoqui
P.
,
Álvarez-Valencia
L. H.
,
Castro-Espinoza
L.
,
Balderas-Cortés
J. D. J.
,
Mondaca-Fernández
I.
,
Chaidez-Quirozb
C.
&
Meza-Montenegro
M. M.
2015
Quantitative microbial risk assessment of Cryptosporidium and Giardia in well water from a native community of Mexico
.
International Journal of Environmental Health Research
25
(
5
),
570
582
.
Balthazard-Accou
K.
,
Evens
E.
,
Agnamey
P.
,
Brasseur
P.
,
Obicson
L.
,
Totet
A.
&
Raccurt
C. P.
2009
Presencia de Cryptosporidium oocysts y Giardia cysts en el agua superficialy en el agua subterránea en la ciudad de Cayos (Les Cayes), Haití
.
Aqua-LAC
1
(
1
),
63
71
.
Basualdo
J.
,
Pezzani
B.
,
De Luca
M.
,
Córdoba
A.
&
Apezteguía
M.
2000
Screening of the municipal water system of La Plata, Argentina, for human intestinal parasites
.
International Journal of Hygiene and Environmental Health
203
(
2
),
177
182
.
Bataiero
M. O.
,
Araujo
R. S.
,
Nardocci
A. C.
,
Matté
M. H.
,
Sato
M. I. Z.
,
Lauretto
M. D. S.
&
Razzolini
M. T. P.
2019
Quantification of Giardia and Cryptosporidium in surface water: A risk assessment and molecular characterization
.
Water Supply
19
(
6
),
1823
1830
.
Bautista
M.
,
Bonatti
T. R.
,
Fiuza
V. R. D. S.
,
Terashima
A.
,
Canales-Ramos
M.
,
José
J.
&
Franco
R. M. B.
2018
Occurrence and molecular characterization of Giardia duodenalis cysts and Cryptosporidium oocysts in raw water samples from the Rímac River, Peru
.
Environmental Science and Pollution Research
25
,
11454
11467
.
Betancourt
W. Q.
,
Querales
L.
,
Sulbaran
Y. F.
,
Rodriguez-Diaz
J.
,
Caraballo
L.
&
Pujol
F. H.
2010
Molecular characterization of sewage-borne pathogens and detection of sewage markers in an urban stream in Caracas, Venezuela
.
Applied and Environmental Microbiology
76
(
6
),
2023
2026
.
Borja-Serrano
P.
,
Ochoa-Herrera
V.
,
Maurice
L.
,
Morales
G.
,
Quilumbaqui
C.
,
Tejera
E.
&
Machado
A.
2020
Determination of the microbial and chemical loads in rivers from the Quito capital province of Ecuador (Pichincha). A preliminary analysis of microbial and chemical quality of the main rivers
.
International Journal of Environmental Research and Public Health
17
(
14
),
5048
.
Bourli
P.
,
Eslahi
A. V.
,
Tzoraki
O.
&
Karanis
P.
2023
Waterborne transmission of protozoan parasites: A review of worldwide outbreaks – An update 2017–2022
.
Journal of Water and Health
21
(
10
),
1421
1447
.
Bracho
M.
,
Chirinos
M.
,
Luna
M.
,
Cheng
R.
,
Días
O.
&
Botero
L.
2009
Frecuencia de Giardia en pacientes con diarrea y el papel del agua para consumo humano en su transmisión
.
Ciencia
17
(
1
),
5
13
.
Brasseur
P.
,
Agnamey
P.
,
Emmanuel
E.
,
Pape
J. W.
,
Vaillant
M.
&
Raccurt
C. P.
2011
Cryptosporidium contamination of surface and water supplies in Haiti
.
Archives of Environmental & Occupational Health
66
(
1
),
12
17
.
Breternitz
B. S.
,
da Veiga
D. P. B.
,
Razzolini
M. T. P.
&
Nardocci
A. C.
2020
Land use associated with Cryptosporidium sp. and Giardia sp. in surface water supply in the state of São Paulo, Brazil
.
Environmental Pollution
266
,
115143
.
Cacciabue
D. G.
,
Juárez
M. M.
,
Poma
H. R.
,
Garcé
B.
&
Rajal
V. B.
2014
Cuantificación y evaluación de la estacionalidad de elementos parasitarios en ambientes acuáticos recreativos de la provincia de Salta, Argentina
.
Revista Argentina de Microbiología
46
(
2
),
150
160
.
Campo-Portacio
D. M.
,
Guerrero-Velásquez
L. F.
,
Castillo-García
A. P.
,
Orozco-Méndez
K.
&
Blanco-Tuirán
P. J.
2021
Detección de Toxoplasma gondii en agua para el consumo humano proveniente de jagüeyes del área rural del municipio de Sincelejo
.
Biomédica
41
,
82
99
.
Campos-Almeida
J. C.
,
Martins
F. D. C.
,
Ferreira Neto
J. M.
,
Santos
M. M. D.
,
Garcia
J. L.
,
Navarro
I. T.
,
Kiyomi Kuroda
E.
&
Freire
R. L.
2015
Occurrence of Cryptosporidium spp. and Giardia spp. in a public water-treatment system, Paraná, Southern Brazil
.
Revista Brasileira de Parasitologia Veterinária
24
,
303
308
.
Campos-Pinilla
C.
,
Cárdenas-Guzmán
M.
&
Guerrero-Cañizares
A.
2008
Comportamiento de los indicadores de contaminación fecal en diferente tipo de aguas de la sabana de Bogotá (Colombia)
.
Universitas Scientiarum
13
(
2
),
103
108
.
Cermeño
J.
,
Arenas
J.
,
Yori
N.
&
Hernández
I.
2008
Cryptosporidium parvum y Giardia lamblia en aguas crudas y tratadas del estado Bolívar, Venezuela
.
Universidad, Ciencia y Tecnología
12
(
46
),
39
42
.
Chaidez
C.
,
Soto
M.
,
Gortares
P.
&
Mena
K.
2005
Occurrence of Cryptosporidium and Giardia in irrigation water and its impact on the fresh produce industry
.
International Journal of Environmental Health Research
15
(
5
),
339
345
.
Chalmers
R. M.
,
Robertson
L. J.
,
Pierre
D.
,
Jordane
S.
,
Kärssinf
A.
,
Katzerh
F.
,
La Carbonai
S.
,
Lallej
M.
,
Lassenk
B.
,
Mladineol
I.
,
Rozyckim
M.
,
Bilska-Zajacm
E.
,
Scharesn
G.
,
Mayer-Schollo
A.
,
Trevisand
C.
,
Tysnesc
K.
,
Vasilevp
S.
&
Klotzq
C.
2020
Detección de parásitos en alimentos: Estado actual y necesidades futuras de validación
.
Tendencias en Ciencia y Tecnología de Alimentos
99
,
337
350
.
Cifuentes
E.
,
Suárez
L.
,
Espinosa
M.
,
Juárez-Figueroa
L.
&
Martínez-Palomo
A.
2004
Risk of Giardia intestinalis infection in children from an artificially recharged groundwater area in Mexico City
.
The American Journal of Tropical Medicine and Hygiene
71
(
1
),
65
70
.
Cinco
M. E. D.
,
Michel
E. E. L.
,
Haro
V. M.
&
Ríos
H. G.
2003
Incidencia y viabilidad de Cryptosporidium parvum en el agua potable de Ciudad Obregón, Sonora, México
.
Revista Internacional de Contaminación Ambiental
19
(
2
),
67
72
.
Costamagna
S. R.
,
Visciarelli
E.
,
Lucchi
L. D.
&
Basualdo
J. A.
2005
Parásitos en aguas del arroyo Naposta, aguas de recreación y de consumo en la ciudad de Bahía Blanca (Provincia de Buenos Aires, Argentina)
.
Parasitología Latinoamericana
60
(
3–4
),
122
126
.
da Silva Barbosa
A.
,
Maior
C. M. A. U. S.
,
da Silva
V. L.
,
Duarte
A. N.
&
Bastos
O. M. P.
2014
Association between the turbidity parameter and ELISA for monitoring of Giardia lamblia, Cryptosporidium sp. e Entamoeba histolytica in samples of fresh water Associação entre o parâmetro de turbidez e o ELISA para monitoramento
.
Ambiência
10
(
Sup
),
389
395
.
de Almeida Mendonça
P. J. L.
,
Gonçalves
B. P. M.
,
dos Reis
J. D. D.
&
Brito
C. R. N.
2021
Avaliação Parasitológica da Água Utilizada para Consumo em Escolas Públicas de Coari, Amazonas, Brasil: Parasitological evaluation of drinking water in public schools in Coari, Amazonas, Brazil
.
Revista Ensino, Saúde e Biotecnologia da Amazônia
3
(
1
),
46
54
.
de Araújo
R. S.
,
Aguiar
B.
,
Dropa
M.
,
Razzolini
M. T. P.
,
Sato
M. I. Z.
,
de Souza Lauretto
M.
,
Galvani
A. T.
,
Padula
J. A.
,
Glavur Rogério
M.
&
Matté
M. H.
2018
Detection and molecular characterization of Cryptosporidium species and Giardia assemblages in two watersheds in the metropolitan region of São Paulo, Brazil
.
Environmental Science and Pollution Research
25
(
15
),
15191
15203
.
de Freitas
D. A.
,
Paiva
A. L. R. D.
,
Carvalho Filho
J. A. A. D.
,
Cabral
J. J. D. S. P.
&
Rocha
F. J. S.
2015
Occurrence of Cryptosporidium spp., Giardia spp. and other pathogenic intestinal parasites in the Beberibe River in the State of Pernambuco, Brazil
.
Revista da Sociedade Brasileira de Medicina Tropical
48
,
220
223
.
de Moura
L.
,
Bahia-Oliveira
L. M. G.
,
Wada
M. Y.
,
Jones
J. L.
,
Tuboi
S. H.
,
Carmo
E. H.
,
Massa Ramalho
W.
,
Camargo
N. J.
,
Trevisan
R.
,
Graça
R. M. T.
,
da Silva
A. J.
,
Moura
L.
,
Dubey
J. P.
&
Garrett
D. O.
2006
Waterborne toxoplasmosis, Brazil, from field to gene
.
Emerging Infectious Diseases
12
(
2
),
326
.
de Paiva Barçante
J. M.
,
Barçante
T. A.
,
Narciso
T. P.
,
Braz
M. S.
&
Silva
E. C.
2014
Ocorrência de doenças veiculadas por água contaminada: Um problema sanitário e ambiental
.
Ambiente & Educação
19
(
2
),
6
17
.
Delgado Vargas
J.
,
Lizarazo
L. M.
,
Valdivieso
M.
&
García
D.
2019
Evaluación cuantitativa de riesgos microbiológicos asociado con el consumo de agua del río Chicamocha en Boavita-Boyacá
.
Revista UDCA Actualidad & Divulgación Científica
22
,
1
.
Dowd
S. E.
,
John
D.
,
Eliopolus
J.
,
Gerba
C. P.
,
Naranjo
J.
,
Klein
R.
,
López
B.
,
de Mejía
M.
,
Mendoza
C. E.
&
Pepper
I. L.
2003
Confirmed detection of Cyclospora cayetanesis, Encephalitozoon intestinalis and Cryptosporidium parvum in water used for drinking
.
Journal of Water and Health
1
(
3
),
117
123
.
Efstratiou
A.
,
Ongerth
J. E.
&
Karanis
P.
2017
Waterborne transmission of protozoan parasites: Review of worldwide outbreaks – An update 2011–2016
.
Water Research
114
(
1
),
14
22
.
doi:10.1016/j.watres.2017.01.036
.
Falcone
A. C.
2021
Parasitosis Intestinales en Poblaciones del Cinturón Hortícola Platense, Buenos Aires: Factores Socio-Económicos Y Ambientales en la Evaluación de Estrategias de Control
.
Doctoral dissertation
,
Universidad Nacional de La Plata
.
FAO/OIE/WHO
.
2009
Un Mundo, Una Salud. Disponible en
.
Franco
R. M.
,
Rocha-Eberhardt
R.
&
Cantusio Neto
R.
2001
Occurrence of Cryptosporidium oocysts and Giardia cysts in raw water from the Atibaia River, Campinas, Brazil
.
Revista do Instituto de Medicina Tropical de São Paulo
43
(
2
),
109
111
.
doi:10.1590/s0036-46652001000200011
.
Gallego Jaramillo
L. M.
,
Heredia Martínez
H. L.
,
Salazar Hernández
J. J.
,
Hernández Muñoz
T. M.
,
Naranjo García
M. M.
&
Suárez Hurtado
B. L.
2014
Identificación de parásitos intestinales en agua de pozos profundos de cuatro municipios. Estado Aragua, Venezuela. 2011–2012
.
Revista Cubana de Medicina Tropical
66
(
2
),
164
173
.
Gamboa
M. I.
,
Navone
G. T.
,
Kozubsky
L.
,
Costas
M. E.
,
Cardozo
M.
&
Magistrello
P.
2009
Protozoos intestinales en un asentamiento precario: Manifestaciones clínicas y ambiente
.
Acta Bioquímica Clínica Latinoamericana
43
(
2
),
213
218
.
Gilardi
G.
,
Garibaldi
A.
&
Gullino
M. L.
2018
Emerging pathogens as a consequence of globalization and climate change: Leafy vegetables as a case study
.
Phytopathologia Mediterranea
57
(
2
),
146
152
.
https://doi.org/10.14601/Phytopathol
.
González-Fernández
A.
,
Symonds
E. M.
,
Gallard-Gongora
J. F.
,
Mull
B.
,
Lukasik
J. O.
,
Navarro
P. R.
,
Aguilar
A. B.
,
Peraud
J.
,
Brown
M. L.
,
Alvarado
M. A.
,
Breitbart
M.
,
Cairns
M. R.
,
Harwood
A.
&
Harwood
V. J.
2021
Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters
.
Water Research
188
,
116507
.
González-Ramírez
L. C.
,
Falconí-Ontaneda
F. A.
,
Yaucén-Rodríguez
M. C.
,
Romero-Zapata
C. F.
,
Parra-Mayorga
P.
,
García-Rios
C. A.
&
Prato-Moreno
J. G.
2020
Dispersión hídrica de enteroparásitos en una zona agropecuaria de gran altitud, en Los Andes Ecuatorianos/Water dispersion of enteroparasites in a high-altitude agricultural area, in The Ecuadorian Andes
.
Kasmera
48
(
2
),
1d
.
Guillen
A.
,
González
M.
,
Gallego
L.
,
Suárez
B.
,
Luz Heredia
H.
,
Hernández
T.
&
Naranjo
M.
2013
Presencia de protozoarios intestinales en agua de consumo en la comunidad 18 de Mayo. Estado Aragua-Venezuela, 2011
.
Boletín de Malariología y Salud Ambiental
53
(
1
),
29
36
.
Guzmán de
R. C. T.
,
Bandes
A.
,
Urbina
J.
,
Cruz
J.
,
Nessi
P. A. J.
,
Galindo
P. M. V.
,
Galindo
M. V.
,
Wagner
C. M.
,
Vethencourt
M. A.
,
Dorta
A.
&
Pérez
G. M. V.
2013
Surveillance of Blastocystis spp, Giardia spp and Cryptosporidium spp in human consumption water in a community of Caracas-Venezuela
.
Revista del Instituto Nacional de Higiene Rafael Rangel
44
(
2
),
33
40
.
Guzmán-Quintero
A.
,
Palacios-Vélez
O. L.
,
Carrillo-González
R.
,
Chávez-Morales
J.
&
Nikolskii-Gavrilov
I.
2007
La contaminación del agua superficial en la cuenca del río Texcoco, México
.
Agrociencia
41
(
4
),
385
393
.
Hachich
E. M.
,
Sato
M. I. Z.
,
Galvani
A. T.
,
Menegon
J. R. N.
&
Mucci
J. L. N.
2004
Giardia and Cryptosporidium in source waters of Sao Paulo state, Brazil
.
Water Science and Technology
50
(
1
),
239
245
.
Hassan
E. M.
,
Örmeci
B.
,
De Rosa
M. C.
,
Dixon
B. R.
,
Sattar
S. A.
&
Iqbal
A.
2021
A review of Cryptosporidium spp. and their detection in water
.
Water Science & Technology
83
(
1
),
1
25
.
doi:10.2166/wst.2020.515
.
Hernandez-Cortazar
I. B.
,
Acosta-Viana
K. Y.
,
Guzman-Marin
E.
,
Ortega-Pacheco
A.
,
Segura-Correa
J. C.
&
Jimenez-Coello
M.
2017
Presence of Toxoplasma gondii in drinking water from an endemic region in Southern Mexico
.
Foodborne Pathogens and Disease
14
(
5
),
288
292
.
Hill
V. R.
,
Polaczyk
A. L.
,
Kahler
A. M.
,
Cromeans
T. L.
,
Hahn
D.
&
Amburgey
J. E.
2009
Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623
.
Journal of Environmental Quality
38
(
2
),
822
825
.
Jouravlev
A.
,
Matus
S. S.
&
Sevilla
M. G.
2021
Reflexiones sobre la gestión del agua en América Latina y el Caribe
.
Textos Seleccionados
2002
2020
.
332 pp. ISBN: 978-92-1-004756-2
.
Juárez
M. M.
,
Poma
H. R.
&
Rajal
V. B.
2015
Cumplir con la legislación nos garantiza consumir agua segura?
RIBAGUA-Revista Iberoamericana del Agua
2
(
2
),
71
79
.
Kahler
A. M.
,
Johnson
T. B.
,
Hahn
D.
,
Narayanan
J.
,
Derado
G.
&
Hill
V. R.
2015
Evaluation of an ultrafiltration-based procedure for simultaneous recovery of diverse microbes in source waters
.
Water
7
(
3
),
1202
1216
.
Kato
S.
,
Ascolillo
L.
,
Egas
J.
,
Elson
L.
,
Gostyla
K.
,
Naples
L.
,
Else
E.
,
Sempértegui
F.
,
Naumova
E.
,
Egorov
A.
,
Ojeda
F.
&
Griffiths
J.
2003
Waterborne Cryptosporidium oocyst identification and genotyping: Use of GIS for ecosystem studies in Kenya and Ecuador
.
The Journal of Eukaryotic Microbiology
50
(
6
),
548
549
.
Kimble
G. H.
,
Hill
V. R.
&
Amburgey
J. E.
2015
Evaluation of alternative DNA extraction processes and real-time PCR for detecting Cryptosporidium parvum in drinking water
.
Water Science and Technology: Water Supply
15
(
6
),
1295
1303
.
Liu
P.
,
Hill
V. R.
,
Hahn
D.
,
Johnson
T. B.
,
Pan
Y.
,
Jothikumar
N.
&
Moe
C. L.
2012
Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water
.
Journal of Microbiological Methods
88
(
1
),
155
161
.
Lopez
A. S.
,
Bendik
J. M.
,
Alliance
J. Y.
,
Roberts
J. M.
,
da Silva
A. J.
,
Moura
I. N.
,
Arrowood
M. J.
,
Eberhard
M. L.
&
Herwaldt
B. L.
2003
Epidemiology of Cyclospora cayetanensis and other intestinal parasites in a community in Haiti
.
Journal of Clinical Microbiology
41
(
5
),
2047
2054
.
Lora-Suarez
F.
,
Rivera
R.
,
Triviño-Valencia
J.
&
Gomez-Marin
J. E.
2016
Detection of protozoa in water samples by formalin/ether concentration method
.
Water Research
100
,
377
381
.
Luna
S.
,
Reyes
L.
,
Chinchilla
M.
&
Catarinella
G.
2002
Presencia de ooquistes de Cryptosporidium spp en aguas superficiales en Costa Rica
.
Parasitología Latinoamericana
57
(
1–2
),
63
65
.
Lura
M. C.
,
Beltramino
D.
,
Abramovich
B.
,
Carrera
E.
,
Haye
M. A.
&
Contini
L.
2002
El agua subterránea como agente transmisor de protozoos intestinales
.
Revista de la Sociedad Boliviana de Pediatría
41
(
2
),
95
102
.
Machado
E. C. L.
,
Stamford
T. L. M.
,
Machado
E. H. L.
,
Soares
D. S.
&
Albuquerque
M. N. L.
2009
Ocorrência de oocistos de Cryptosporidium spp. em águas superficiais na região metropolitana de Recife-PE
.
Arquivo Brasileiro de Medicina Veterinária e Zootecnia
61
,
1459
1462
.
Mahapatra
S.
,
Ali
M. H.
,
Samal
K.
&
Moulick
S.
2022
Diagnostic and treatment technologies for detection and removal of helminth in wastewater and sludge
.
Energy Nexus
8
,
100147
.
https://doi.org/10.1016/j.nexus.2022.100147
.
Martínez
P. M.
&
Caicedo
A. R.
2016
Estudio preliminar sobre la identificación y cuantificación de huevos de helmintos en el estuario y Río Atacames, Esmeraldas, Ecuador
.
Revista Científica Hallazgos21
1
(
2
),
1
12
.
Mora
L.
,
Martínez
I.
,
Figuera
L.
,
Segura
M.
&
Del Valle
G.
2010
Protozoarios en aguas superficiales y muestras fecales de individuos de poblaciones rurales del municipio Montes, estado Sucre, Venezuela
.
Investigación Clínica
51
(
4
),
457
466
.
Morales-Mora
E.
,
Reyes-Lizano
L.
,
Barrantes-Jiménez
K.
&
Chacón-Jiménez
L.
2022
Evaluación temporal y espacial en la calidad microbiológica del agua superficial: Caso en un sistema de abastecimiento de agua para consumo humano en Costa Rica
.
Revista de Ciencias Ambientales
56
(
1
),
120
137
.
Morales-Morales
H. A.
,
Vidal
G.
,
Olszewski
J.
,
Rock
C. M.
,
Dasgupta
D.
,
Oshima
K. H.
&
Smith
G. B.
2003
Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water
.
Applied and Environmental Microbiology
69
(
7
),
4098
4102
.
Mota
A.
,
Mena
K. D.
,
Soto-Beltran
M.
,
Tarwater
P. M.
&
Cháidez
C.
2009
Risk assessment of Cryptosporidium and Giardia in water irrigating fresh produce in Mexico
.
Journal of Food Protection
72
(
10
),
2184
2188
.
Neto
R. C.
,
dos Santos
L. U.
,
Sato
M. I. Z.
&
Franco
R. M. B.
2010
Cryptosporidium spp. and Giardia spp. in surface water supply of Campinas, southeast Brazil
.
Water Science and Technology
62
(
1
),
217
222
.
Norberg
P. R. B. M.
,
Manhães
F. C.
,
Mangiavacchi
B. M.
,
Ribeiro
P. C.
,
Evangelista
V. D.
,
Queiroz
M. M. C.
&
Norberg
A. N.
2020
Contamination of urban rivers in the city of Asunción, Paraguay, with oocysts of Cryptosporidium spp. and cysts of Giardia spp
.
World Journal of Pharmacy and Pharmaceutical Sciences
9
(
1
),
120
.
Olivas-Enriquez
E.
,
Flores-Margez
J. P.
,
Serrano-Alamillo
M.
,
Soto-Mejía
E.
,
Iglesias-Olivas
J.
,
Salazar-Sosa
E.
&
Fortis-Hernández
M.
2011
Indicadores fecales y patógenos en agua descargada al río Bravo
.
Terra Latinoamericana
29
(
4
),
449
457
.
Olivas Enríquez
E.
,
Flores Márgez
J. P.
,
Di Giovanni
G. D.
,
Corral Díaz
B.
&
Osuna Avila
P.
2013
Contaminación fecal en agua potable del Valle de Juárez
.
Terra Latinoamericana
31
(
2
),
135
143
.
Osaki
S. C.
,
Soccol
V. T.
,
Costa
A. O.
,
Oliveira-Silva
M. B.
,
Pereira
J. T.
&
Procópio
A. E.
2013
Polymerase chain reaction and nested-PCR approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil
.
Revista da Sociedade Brasileira de Medicina Tropical
46
,
270
276
.
Oshima
K. H.
2001
Efficient and Predictable Recovery of Viruses and Cryptosporidium parvum Oocysts from Water by Ultrafiltration Systems (No. 316)
.
New Mexico Water Resources Research Institute, New Mexico State University
,
New Mexico
.
Pincay
Y. E. D.
,
Castillo
J. A. P.
,
López
S. N. D.
&
Medina
E. I. C.
2022
Condiciones ambientales, sintomatología clínica asociada a parasitosis intestinal, a nivel de Latinoamérica
.
Polo del Conocimiento
7
(
8
),
2425
2459
.
Poma
H. R.
,
Cacciabue
D. G.
,
Garcé
B.
,
Gonzo
E. E.
&
Rajal
V. B.
2012
Towards a rational strategy for monitoring of microbiological quality of ambient waters
.
Science of the Total Environment
433
,
98
109
.
Prato-Moreno
J. G.
,
Millán-Marrero
F. C.
,
Prada-Andrade
C. M.
,
Tănăselia
C.
,
Prado
L. C.
,
Lucena
M. E.
,
Ríos-García
I.
&
González-Ramírez
L. C.
2020
Caracterización fisicoquímica y microbiológica de aguas subterráneas de un sector rural a baja altitud en Los Andes venezolanos
.
Kasmera
48
(
1
),
1
12
.
Quintero-betancourt
W.
&
Botero de Ledesma
L.
2000
Descriptive study on the presence of protozoan cysts and bacterial indicators in a drinking water treatment plant in Maracaibo, Venezuela
.
International Journal of Environmental Health Research
10
(
1
),
51
61
.
doi:10.1080/09603120073009
.
Rajal
V. B.
,
McSwain
B. S.
,
Thompson
D. E.
,
Leutenegger
C. M.
,
Kildare
B. J.
&
Wuertz
S.
2007
Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples
.
Water Research
41
(
7
),
1411
1422
.
Rangel-Martínez
C.
,
Jiménez-González
D. E.
,
Martínez-Ocaña
J.
,
Romero-Valdovinos
M.
,
Castillo-Rojas
G.
,
Espinosa-García
A. C.
,
Lopez-Vidalc
Y.
,
Mazari-Hiriartdand
M.
&
Maravilla
P.
2015
Identification of opportunistic parasites and helminth ova in concentrated water samples using a hollow-fibre ultrafiltration system
.
Urban Water Journal
12
(
5
),
440
444
.
Razzolini
M. T. P.
,
da Silva Santos
T. F.
&
Bastos
V. K.
2010
Detection of Giardia and Cryptosporidium cysts/oocysts in watersheds and drinking water sources in Brazil urban areas
.
Journal of Water and Health
8
(
2
),
399
404
.
Razzolini
M. T. P.
,
Weir
M. H.
,
Matte
M. H.
,
Matte
G. R.
,
Fernandes
L. N.
&
Rose
J. B.
2011
Risk of Giardia infection for drinking water and bathing in a peri-urban area in Sao Paulo, Brazil
.
International Journal of Environmental Health Research
21
(
3
),
222
234
.
Rey
F.
,
Acosta
S.
,
Martínez
W.
,
Lena
A.
,
Tort
C.
,
Acuña
A.
,
Acuña
A.
,
Míguez
D.
&
Ureta
A.
2016
Implementación de métodos moleculares y microscópicos para estudios clínicos y ambientales relativos a Cryptosporidium sp. en Uruguay
.
Innotec
12
,
34
47
.
Rhodes
E. R.
,
Hamilton
D. W.
,
See
M. J.
&
Wymer
L.
2011
Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water
.
Journal of Virological Methods
176
(
1–2
),
38
45
.
Rodríguez
D. C.
,
Pino
N.
&
Peñuela
G.
2012
Microbiological quality indicators in waters of dairy farms: Detection of pathogens by PCR in real time
.
Science of the Total Environment
427
,
314
318
.
Rodriguez-Alvarez
M. S.
,
Weir
M. H.
,
Pope
J. M.
,
Seghezzo
L.
,
Rajal
V. B.
,
Salusso
M. M.
&
Morana
L. B.
2015
Development of a relative risk model for drinking water regulation and design recommendations for a peri urban region of Argentina
.
International Journal of Hygiene and Environmental Health
218
(
7
),
627
638
.
Ruiz-Taborda
J. P.
,
Casas-Valencia
A.
&
Cardon-Arias
J. A.
2018
Análisis del parasitismo intestinal y la malnutrición en Suramérica desde sus determinantes sociales
.
CES Salud Pública
8
(
2
),
25
33
.
Ryu
H.
,
Alum
A.
,
Abbaszadegan
M.
,
Alvarez
M.
&
Mendoza
J.
2005
An assessment of water quality and microbial risk in Rio Grande basin in the United States–Mexican border region
.
Journal of Water and Health
3
(
2
),
209
218
.
Saboyá
M. I.
,
Catalá
L.
,
Nicholls
R. S.
&
Ault
S. K.
2013
Actualización sobre el mapeo de prevalencia e intensidad de la infección por geohelmintiasis en América Latina y el Caribe: Un llamado a la acción
.
PLoS Enfermedades Tropicales Desatendidas
7
(
9
),
e2419
.
Sánchez
C.
,
López
M. C.
,
Galeano
L. A.
,
Qvarnstrom
Y.
,
Houghton
K.
&
Ramírez
J. D.
2018
Molecular detection and genotyping of pathogenic protozoan parasites in raw and treated water samples from southwest Colombia
.
Parasites & Vectors
11
,
1
11
.
Santos
S. F.
,
Silva
H. D.
,
Wosnjuk
L. A.
,
Anunciação
C. E.
,
Silveira-Lacerda
E. P.
,
Peralta
R. H.
,
Cunha
F. S.
,
Dela-Savia Ferreira
T.
&
García-Zapata
M. T.
2016
Occurrence and evaluation of methodologies to detect Cryptosporidium spp. in treated water in the Central-West Region of Brazil
.
Exposure and Health
8
,
117
123
.
Sato
M. I. Z.
,
Galvani
A. T.
,
Padula
J. A.
,
Nardocci
A. C.
,
de Souza Lauretto
M.
,
Razzolini
M. T. P.
&
Hachich
E. M.
2013
Assessing the infection risk of Giardia and Cryptosporidium in public drinking water delivered by surface water systems in Sao Paulo State, Brazil
.
Science of the Total Environment
442
,
389
396
.
Scherer
G. S.
,
Leal
D. A. G.
,
Greinert Goulart
J. A.
,
Araújo
R. S.
,
Beux
M. R.
&
Moreira
N. M.
2022
Parasitological, microbiological, and antimicrobial resistance profiles of raw and drinking water in a tourist city in the tri-border region of South America
.
Journal of Water and Health
20
(
2
),
385
395
.
Silva
G. G.
,
Silva
D. A.
,
de Oliveira Paro
M.
,
Pereira
V. V.
&
César
J. J.
2017
Parasitological analysis from water reservoirs used for food irrigation in Vale Verde district (Minas Gerais, Brazil)
.
Revista Acta Ambiental Catarinense
14
(
1/2
),
1
5
.
Tiyo
R.
,
Souza
C. Z. D.
,
Nishi
L.
,
Brustolin
C. F.
,
Ratti
B. A.
&
Falavigna Guilherme
A. L.
2015
Water from different sources used for the irrigation of vegetables to be marketed: Research on Cryptosporidium spp., Giardia spp., and coliforms in Paraná, Brazil
.
Revista do Instituto de Medicina Tropical de São Paulo
57
,
333
336
.
Toledo
R. D. S.
,
Martins
F. D. C.
,
Ferreira
F. P.
,
de Almeida
J. C.
,
Ogawa
L.
,
dos Santos
H. L. E. P. L.
,
dos Santos
M. M.
,
Aguera Pinheiro
F.
,
Navarro
J. L.
,
Garcia
I. T.
&
Freire
R. L.
2017
Cryptosporidium spp. and Giardia spp. in feces and water and the associated exposure factors on dairy farms
.
PLoS One
12
(
4
),
e0175311
.
Traviezo
L.
,
Fernández
G.
,
Garabán
C.
,
González
J.
,
Hamm
J.
,
Landaez
M.
,
Llaque
J.
,
Marín
M.
,
Najul
M.
&
Cárdenas
E.
2017
Presencia de enteroparásitos en aguas del río turbio, Estado Lara, Venezuela
.
Revista Hispanoamericana de Ciencias de la Salud
3
(
2
),
47
52
.
Triviño-Valencia
J.
,
Lora
L.
,
Zuluaga
J. D.
&
Gomez-Marin
J. E.
2016
Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia
.
Parasitology Research
115
,
1789
1797
.
doi:10.1007/s00436-016-4917-5
.
Unzaga
J. M.
&
Zonta
M. L.
2023
Protozoos Parásitos de Importancia Sanitaria: Un Abordaje Transdisciplinar
.
Libros de Cátedra
.
Verant
M. L.
,
d'Ozouville
N.
,
Parker
P. G.
,
Shapiro
K.
,
VanWormer
E.
&
Deem
S. L.
2014
Attempted detection of Toxoplasma gondii oocysts in environmental waters using a simple approach to evaluate the potential for waterborne transmission in the Galápagos Islands, Ecuador
.
Ecohealth
11
(
2
),
207
214
.
doi:10.1007/s10393-013-0888-5. Epub 2013 Dec 5
.
Vielma
J. R.
,
Delgado
Y.
,
Bravo
Y. A.
,
Gutiérrez Peña
L. V.
&
Villarreal
J. C.
2016
Enteroparasites and thermotolerant coliforms in water and human feces of sectors Juan de Dios González and El Moralito, Colón Municipality, Zulia State
.
Acta Bioclínica
6
(
11
),
25
43
.
Xavier
R. P.
,
Siqueira
L. P.
,
Vital
F. A. C.
,
Rocha
F. J. S.
,
Irmão
J. I.
&
Calazans
G. M. T.
2011
Microbiological quality of drinking rainwater in the inland region of Pajeú, Pernambuco, Northeast Brazil
.
Revista do Instituto de Medicina Tropical de São Paulo
53
,
121
124
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data