Distribution system data from a Nova Scotia municipal drinking water supply was collected over four years, including free chlorine residual concentration, heterotrophic plate count (HPC) bacteria, and temperature. These data were analyzed for occurrences of HPC bacteria greater than 500 colony forming units (CFU)/mL. The municipality was interested in determining if secondary chlorination practices were sufficient in maintaining microbial health in their distribution system. Coliform data were non-detect (total coliforms and Escherichia coli) in the distribution system over this period and thus heterotrophic bacteria were used to assess microbial health. Results were compared to similar data collected from pilot-scale studies that had been carried out using the same municipal water as the source. Analysis showed that a similar trend was observed between pilot- and full-scale samples. Full-scale data analysis revealed that the minimum disinfection requirement of 0.2 mg/L did not consistently control occurrences of heterotrophic bacteria from being greater than 500 CFU/mL. By comparison, maintaining a concentration of 0.3 mg/L or above, particularly in warm-weather systems, maintained the number of heterotrophic bacteria at below 500 CFU/mL. Fortunately the majority of samples collected in the full-scale distribution system (>89%) had a free chlorine residual concentration of greater than 0.30 mg/L. While it is recognized that this system had 100% compliance for E. coli, the goal of this work will help utilities understand how to utilize microbial data to inform operational disinfection targets for their distribution system.

This content is only available as a PDF.