This paper describes the on-going pilot scale development of a new treatment process designed to remove radium-226 from uranium milling effluents. Presently, decants from Canadian uranium mining and milling tailings areas are treated with barium chloride to remove radium-226 prior to discharge into the environment. This is usually accomplished in large natural or man-made ponds which provide an opportunity for a (Ba,Ra)SO4 precipitate to form and subsequently settle. Sand filtration is sometimes used as a polishing step. This new process differs from conventional and other experimental processes in that it involves the use of a fluidized bed to facilitate the deposition of a (Ba,Ra)SO4 precipitate on a granular medium of high surface area. As a stand-alone treatment process, the new process is consistently able to reduce incoming radium-226 activity levels by 90-99%. Effluent levels of 10 pCi/L (0.370 Bq/L) or less have been achieved, depending on the influent activity levels. Recent testing of the process as a polishing step has demonstrated radium removal efficiencies up to 60% when the process influent was already less than 5 pCi/L (0.185 Bq/L). The process has been operated at temperatures ranging from 26°C down to 0.3°C with no reduction in efficiency. In contrast to treatment times in the order of days for conventional settling pond systems and hours for mechanical stirred tank/filtration systems, the new process is able to achieve these radium removal efficiencies in times on the order of one minute.

This content is only available as a PDF.