Abstract

Fly ash was investigated for its ability to adsorb dyes from aqueous solutions. Batch pH, kinetic and isotherm studies were performed on a laboratory scale with synthetic dye solutions made up of four different commercial grade dyes. Fly ash samples with differing compositions and particle sizes were employed to understand the effect of fly ash composition and particle size on their dye removal capacity. The first-order rate equation by Lagergren was tested on the kinetic data, and isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherm equations. The removal capacity of fly ash for the different dyes was compared with that of granular activated carbon under identical conditions. Results showed that fly ash exhibited reasonably good dye removals for Basic Blue 9, Acid Blue 29 and Acid Red 91, while the removals by fly ash exceeded that of granular activated carbon for Disperse Red 1. Lime content in fly ash seemed to influence dye adsorption to a significant degree — better adsorption was observed at lower particle sizes because of the increased external surface area available for adsorption. Acid Blue 29 adsorption by fly ash provided the best fit for the Lagergren first-order plot. Because high pH and heavy metals (leached from fly ash) in the treated wastewater may exceed the limits set in municipal sewer-use bylaws, engineering and economic feasibility assessment should include these aspects when considering fly ash for colour removal.

This content is only available as a PDF.