Abstract

A hypothesis stating that more complex descriptions of processes in models simulate reality better (less error) but with more unreliable predictability (more sensitivity) is tested using a river water quality model. This hypothesis was extended stating that applying the model on a domain of smaller scale requires greater complexity to capture the same accuracy as in large-scale model applications which, however, leads to increased model sensitivity. The sediment and pollutant transport model TOXI, a module in the WASP5 package, was applied to two case studies of different scale: a 90-km course of the 5th order (sensu Strahler 1952) lower Saale river, Germany (large scale), and the lock-and-weir system at Calbe (small scale) situated on the same river course. A sensitivity analysis of several parameters relating to the physical and chemical transport processes of suspended solids, chloride, arsenic, iron and zinc shows that the coefficient, which partitions the total heavy metal mass into its dissolved and sorbed fraction, is a very sensitive parameter. Hence, the complexity of the sorptive process was varied to test the hypotheses.

This content is only available as a PDF.