The aim of this work is to provide the contribution of water quality indices (WQIs) to environmental management of water resources, during the last three decades in Argentina. As part of the Latin America and the Caribbean region, one of the most water-rich regions in the world, monitoring and management of water stress has not always received enough attention. Particularly, if it is taking into account that due to high temporal and geographic variability in water distribution, it was, it is and it will be the main driver for the development of the activities of the country. A summary of the role of key actors involved in the integral management of water resources is presented, with particular emphasis in those ones responsible of the implementation of water quality monitoring programs and the management of environmental data coming from them. Finally, this work presents different WQIs that have been used in Argentina to assess decision-making. Two case studies (Matanza-Riachuelo River basin and Río de la Plata River) have been selected to show how one of them, the WQI of the Canadian Council of Ministers of Environment, has been implemented.

  • How do WQIs contribute to environmental management in Argentina?

  • WQIs as communication tools for stakeholders and decision-makers.

  • WQIs put value on environmental data management and environmental monitoring programs.

  • Sanitation of the Matanza-Riachuelo basin.

  • Pollution of the Southern Coastal Strip of the Río de la Plata.

Sources, quality and spatial and temporal distribution of water in Argentina

One of the major challenges of water resources management deals with the availability of water for different stakeholders, which depends on sources, quality, spatial and temporal distribution and sustainability.

Latin America and the Caribbean is one of the most water-rich regions in the world, home to the Amazon and Río de la Plata basins. The region receives 29% of the planet's terrestrial precipitation while accounting for only 10% of the world's population, resulting in an average of 21,300 m3 of water per person per year - four times the global average (Vázquez et al. 2021).

Argentina has an average of 876.2 km3 year−1 of renewable water resources (FAO 2015), with a population of 45,892,285 habitants (INDEC 2022), giving more than 20,000 m3 of water per person per year. Despite this, two-thirds of the country consists of arid or semi-arid regions (Figure 1). Approximately 67% of its water resources come from external sources, mainly from the Río de la Plata basin.
Figure 1

Annual rainfall and direct water balance (precipitation minus evapotranspiration). Source: Vázquez et al. (2021).

Figure 1

Annual rainfall and direct water balance (precipitation minus evapotranspiration). Source: Vázquez et al. (2021).

Close modal

Monitoring of water stress has not received much attention across the Latin America and the Caribbean region, although many countries have high water stress (Vázquez et al. 2021). Particularly, Argentina ‘faces major challenges in reaching the SDG targets aiming to improve water quality (SDG 6.3) and protect water-related ecosystems (SDG 6.6)’ (Vázquez et al. 2021).

Urban and peri-urban basins (such as Matanza-Riachuelo, Reconquista, Lujan, Salí-Dulce and Mendoza) and the southern coastal strip of the Río de la Plata are polluted by partially treated or untreated domestic and industrial effluents coming from the activities developed in them. Contaminants (bacteria, organic matter, nitrogen, phosphorus and sulfur compounds, heavy metals and persistent organic pollutants) affect the aptitude of use of surface waters and the first aquifer of these basins.

Where do these contaminants go? Most of them discharge to the Río de la Plata basin, particularly the coastal areas of the Paraguay, Parana and Uruguay rivers; and the coast of the inner estuary of the Río de la Plata. Other contaminants go to lagoons or the coasts of the Mar Argentino (Figure 2).
Figure 2

Surface water basins of Argentina and provincial limits. Source: Vázquez et al. (2021).

Figure 2

Surface water basins of Argentina and provincial limits. Source: Vázquez et al. (2021).

Close modal

In addition, urban development along Argentina's ocean coastline, without adequate sanitation infrastructure, creates punctual pollution sources of solid waste, microplastics (Ronda et al. 2021; Arias et al. 2023), domestic and industrial effluents, hydrocarbon spills from ports and maritime transport. Due to heavy urbanization, industrial settlement and port activities, in the Uruguay and Parana sub-basins, the concentration of nutrients and metals in the Rio de la Plata estuary has increased, changing the eutrophic status of the system (Pizarro & Orlando 1985; Jaime et al. 2001). Waste from highly urbanized areas reaches Río de la Plata through stream, river and storm drain discharge, and travels to distant areas along the Argentine coast (Gonzalez Carman 2015). The ingestion of microplastic threatens marine and freshwater fauna and their biodiversity (Eerkes-Medrano et al. 2015).

Agricultural activities also contribute to the decline in water quality through the use of agrochemicals (pesticides and fertilizers) that spread in the environment through runoff and infiltration, polluting groundwater and surface water; thus, damaging aquatic ecosystems. The most productive areas of Argentina (the so-called Pampa Húmeda) are the ones that receive the major impact of pesticide application (due to soy and corn needs); and the major impact of the use of nitrogen and phosphorous fertilizers (due to wheat and corn needs) (Urseler et al. 2022).

Nutrient enrichment and reservoirs constructions, in the context of climate change, have a direct impact on the composition, structure, and dynamics of marine and freshwater ecosystems. Cyanobacteria blooms that could liberate the toxin microcystin and others are considered an indicator of water stress and are commonly found in Argentina freshwaters in Buenos Aires, Santa Fe, Entre Ríos, La Pampa and Córdoba provinces (Aguilera et al. 2018).

Nitrate constitutes the major contaminant present in groundwater. In the AMBA region, it is associated with overexploitation of the Puelche aquifer (Giannuzzi 2016) and leakages from obsolete sewage systems, and septic tanks in areas without sanitation services (Martínez et al. 2014). The use of nitrogen fertilizers is the main source of nitrate in rural areas; being the irrigation activities, the main mechanism of transport of nitrate to groundwater (Costa et al. 2002; Moschione 2011).

Natural sources provide arsenic, boron and fluoride contaminants to groundwater. Argentina is one of the world's top 12 countries for arsenic concentration in groundwater (Bundschuh et al. 2008). Approximately 10% of people in Argentina are exposed to arsenic, and 2.6% of them suffer from hydroarsenicism. The provinces of Chaco, Córdoba, Tucumán, Santiago del Estero and Buenos Aires are the most affected ones, including most of the highly populated areas of Argentina. Salta, Jujuy, Mendoza, San Juan and San Luis provinces also have areas with the presence of arsenic in groundwater sources (RSA-CONICET 2018). In many of these areas, groundwater is the main source of drinking water throughout the year, mainly exposing rural and dispersed populations without safe surface sources to the contaminants (Grande Cobián 2019). The use of groundwater with arsenic for irrigation purposes in farm fields increases the risk of arsenic contamination (Rosas-Castor et al. 2014).

Figure 3 presents a conceptual model of sources, contaminants, environmental components and receptors that affect water quality. This conceptualization must be present in the design of the water quality monitoring programs that contribute to the integrated management of water resources in Argentina.
Figure 3

Conceptual model of sources, contaminants, environmental components and receptors affecting water quality of water resources in Argentina. pT or nT, partially treated and non-treated domestic and industrial effluents; SS, suspended solids; N, nitrogen, S, sulfur; P, phosphorous; As, arsenic; B, boron; F, fluorine. Source: Personal elaboration.

Figure 3

Conceptual model of sources, contaminants, environmental components and receptors affecting water quality of water resources in Argentina. pT or nT, partially treated and non-treated domestic and industrial effluents; SS, suspended solids; N, nitrogen, S, sulfur; P, phosphorous; As, arsenic; B, boron; F, fluorine. Source: Personal elaboration.

Close modal

Integrated management of water resources in Argentina

Due to its constitution, Argentina has three levels of administration: national, provincial and municipal. The provinces have the original domain of the natural resources existing in their territory (CNA 1994, Art. 124). This multi-level governance system implies a highly decentralized and complex water policy setting, which is primarily driven by the 23 provinces and the city of Buenos Aires, including for shared rivers (OECD 2019). National law N° 25.688 from 2002, about the ‘Regime of Environmental Management of Waters’ encourages the creation of interjurisdictional river basin committees to promote sustainable environmental management of interprovincial river basins. This law was subject to numerous criticisms by most provincial water authorities. Provinces claimed that the law colluded with provincial competences that have not been delegated to the national government, such as river basin institutionalization, management of natural resources, development of local institutions and water planning and management (Pochat 2005). Consequently, this law has not been fully enforced to date.

Argentina has achieved important milestones in the development of its water policy since 1969 (Dardis 2013). The Federal Water Agreement among the provinces in 2003 laid down the foundations of a state water policy with a strong focus on water resources management; with 49 guiding principles acknowledging aspects of the management of water related to its cycle, the environment, the society, management, institutions, the law, the economy, management tools and gender (COHIFE 2023). Principles 6 (water quality), 7 (actions against contamination) and 45 (monitoring) are directly related to the aim of this work. The latter one establishes that ‘Know and evaluate the state and dynamics of water resources with precision in quantity and quality constitutes the basic input of any process planning and management, providing also essential information to control the efficiency and sustainability of water systems and the set of social and economic activities related to water. It is a function of the National State to ensure the collection and dissemination of basic climatic, meteorological and cartographic information’.

Legal frameworks of water resources management widely vary in different provinces. Some of them have well-developed legislation (i.e. Mendoza, Tucuman). Others have not regulated important aspects such as irrigation systems, user's organizations and water rights. Seven provinces still do not have legal provisions for the combined management of surface and groundwater resources (OECD 2019).

Principle 25 of the Federal Water Agreement adopts the basin as the management unit, promoting the formation of basin organizations dedicated to the coordinated and participatory management of water resources within the limits of the basin (COHIFE 2023).

The main challenges of environmental management in Argentina, and particularly basin management, include being proactive, preventive and planned. In order to move in this direction, putting efforts in the provision of enough data and information to improve water management will be a cornerstone (OECD 2019).

Management tools

Environmental monitoring programs and databases

  • 1. The Administrative Commission of the Uruguay River develops and implements the Comprehensive Monitoring Plan of the Uruguay River for the entire shared section. It includes monitoring of water, sediment, phytoplankton and benthos. Biota parameters surveyed were aimed to determine diversity, taxonomic, abundance and biomass of phytoplankton, and the richness, evenness, dominance and diversity of tolerant and sensitive species of benthic macroinvertebrates.

  • The information of the state of the river is synthesized using a water quality index (WQI) based on a readjustment of the international index ‘water quality index’. It uses 16 parameters representative of different families of contaminants present in the river, which summarizes the quality of water in categories ranging from ‘poor’ to ‘excellent’ (CARU 2019).

  • 2. The Support System for Decision Making of the La Plata basin is an operational platform for managing a large amount of hydrometeorological information produced by Argentina, Bolivia, Brazil, Paraguay and Uruguay, and products related to floods, droughts and water quality, necessary to support timely and informed decision-making related to water management and early warning (SSTD 2024).

  • 3. The Administrative Commission of Río de la Plata in its Environmental Management Plan (CARP 2017) presents the Dredging Material and Water Quality Assessment Program, which aims to:

    • • provide the basic guidelines for the evaluation of the quality of the water and the materials to be dredged and the dredging, both in the channel and in the emptying areas;

    • • produce databases and systematize the information generated on water quality and river bottom materials;

    • • statistically process the quality data generated which is stored and accompanied with the spatial and temporal graphic presentations of results;

    • • contrast the results obtained with the water and sediment quality criteria taken as reference, and with the baseline of water quality and dredged material, prepared by the CARP.

  • 4. The Argentine-Paraguayan Joint Commission of the Paraná River has a water quality monitoring program upstream and downstream of the Yacyretá dam.

  • 5. The Trinational Commission for the Development of the Pilcomayo River basin has a unique database for water and sediments quality developed from 2006 to the present.

  • 6. The Yacyretá Binational Entity (EBY) developed a water quality monitoring program that is implemented in the section of the Upper Paraná. The work area also includes some of the lateral branches of the main reservoir or larger sub-reservoirs, as well as smaller sub-reservoirs with urban trace, to analyze external contributions to the main course.

Water quality indices

The International Atomic Energy Agency project ARCAL RLA/1/010 (Improvement of management of contamination of surface water bodies contaminated with metals), in accordance with international recommendations (PAHO and WHO), proposed to contribute to the improvement of water quality management of surface water bodies by harmonizing protocols and training the human resources necessary for the evaluation of water quality and the transport of metals in surface water bodies in countries in the Latin American region with problems of metal contamination (natural or anthropogenic); applying nuclear and complementary analytical techniques, including the use of tracers (Cicerone et al. 2011).

One product related to this project is the proposal of a WQI for the Latin American and Caribbean region (Avila Pérez et al. 2011). This document provides a diagnosis regarding the use of WQIs in the region; it reflects the consensus reached during the workshop held in Rio de Janeiro, Brazil, in 2007, where a WQI was suggested for the Latin America and Caribbean region. It highlights the strengths and weaknesses of using this index and demonstrates how it has been applied to various ecosystems in the region (Avila Perez et al. 2011).

Table 1 presents three WQIs used in Argentina across different types of studies to address water quality: research (Vignolo et al. 2006; Nader et al. 2013), development and environmental management. The indexes developed by Martínez de Bascarán (1979) and the Canadian Council of Ministers of Environment (2017) rely on physicochemical and microbiological parameters that describe water quality, most of which are regulated by law regarding water use. In contrast, the Pampean Diatom Index (IDP), developed by Gómez & Licursi (2001), is based on the epipelic diatom community and has been formerly applied at a regional scale for the assessment of water quality in rivers and streams in the Pampean plain.

Table 1

Water quality indices

NameFormulaReference
CCME WQI  CCME (2017)  
Pampean Diatom Index  Gómez & Licursi (2001)  
WQIB  Martínez et al. (2014)  
NameFormulaReference
CCME WQI  CCME (2017)  
Pampean Diatom Index  Gómez & Licursi (2001)  
WQIB  Martínez et al. (2014)  

The IDP is a tool, at the regional scale, developed to assess the water quality of rivers and smaller streams of the Pampean plain in Argentina. The index is based on the sensitivity of the epipelic diatom assemblages integrating the effect of organic enrichment and eutrophication, two phenomena which can hardly be separated (Gómez & Licursi 2001).

For the elaboration of the index, 210 species were identified, quantified and categorized according to their sensitivity to organic enrichment and eutrophication, taking into account the main variables BOD5, and PO4.

The IDP is used by researchers and environmental managers to detect pollution gradients, particularly nutrient enrichment and organic matters; and in the evaluation of the effects of agricultural runoff, urban discharges and industrial pollutants on aquatic ecosystems (Gómez 1999; Licursi & Gómez 2002). It provides a localized assessment, improving its accuracy, supporting management decisions and prioritizing remediation efforts.

The WQI developed by Martínez de Bascarán (1979) simplifies the assessment of water quality by integrating 20 physical, chemical and biological parameters into a single numerical value. It references the operational values of pH, conductivity, dissolved oxygen, permanganate reduction, total coliforms, N-NH4+, chloride, temperature, detergents, aspect, hardness, dissolved solids, fats and oils, sulfate, nitrate, cyanides, sodium, calcium, magnesium, phosphates, nitrites and biological chemical demand, to a situation that is considered admissible or desirable, that is defined by certain standards or criteria. Each parameter is assigned a quality value (Ci) and a weight (Pi) based on its importance to overall water quality. The final WQI is calculated using a weighted average (see Table 1, Equation (3)) providing a clear and comparable metric to assess and communicate water quality conditions effectively across different water bodies.

Limitations

Where it has been applied

This work focuses on the use of the CCME WQI for environmental management in Argentina, particularly in the case studies presented above. Therefore, it is described in detail in the following paragraphs of this section.

The CCME WQI is based on three factors: Scope (F1), which represents the percentage of parameters exceeding the regulated limit during an established time range in relation to the total number of analyzed parameters; Frequency (F2), which represents the percentage of individual results that do not comply with the limits and Amplitude (F3), which represents the amount by which out-of-range values fail to meet the corresponding limits. The calculation methodology of the index is based on the concept that these three factors can be combined to form a resultant vector in a three-dimensional space, producing a single value between 0 and 100 that describes water quality (see Table 2). For more details, see CCME (2017).

Table 2

WQI categories according to CCME (2017) 

WQI (%)CategoryObs
95–100 Excellent The water quality is protected, with hardly any deterioration; the resource condition is almost equal to its desired state 
80–94 Good The water quality is protected with a lower degree of threat or deterioration; the resource condition rarely deviates from its desired state 
65–79 Fair The water quality is usually protected, but occasionally threatened or deteriorated; the resource condition sometimes differs from its desired state 
45–64 Marginal/poor The water quality is frequently threatened or deteriorated; the resource condition often differs from its desired state 
0–44 Very poor The water quality is almost always threatened or deteriorated; the resource condition usually differs from its desired state 
WQI (%)CategoryObs
95–100 Excellent The water quality is protected, with hardly any deterioration; the resource condition is almost equal to its desired state 
80–94 Good The water quality is protected with a lower degree of threat or deterioration; the resource condition rarely deviates from its desired state 
65–79 Fair The water quality is usually protected, but occasionally threatened or deteriorated; the resource condition sometimes differs from its desired state 
45–64 Marginal/poor The water quality is frequently threatened or deteriorated; the resource condition often differs from its desired state 
0–44 Very poor The water quality is almost always threatened or deteriorated; the resource condition usually differs from its desired state 

After the evaluation of the index, its value has to be referred to the following categories in order to evaluate water quality.

Case studies

Río de la Plata basin

Introduction

The Río de la Plata sustains multiple uses for a vast population and provides numerous benefits for industries, navigation, recreational activities and water sports. It is also the main source of drinking water and receives the effluents of approximately 35% of the Argentine population. Additionally, it is important for its biodiversity and fishery resources, among other things. However, all this population and the activities generated also produce a negative environmental impact. For this reason, numerous water quality monitoring programs have been carried out for decades, mainly to assess the suitability for recreational use with direct contact.

Since 2004, four seasonal campaigns per year have been conducted (71 in total, with some gaps due to budgetary issues), from the municipality of Tigre (coast of the Luján River) to Berisso, including the City of Buenos Aires (Figure 4). These campaigns are within the framework of the water quality program of the southern coastal strip of the Río de la Plata (SAyDS Resolution 520/2014, SAYDS 2014). This program monitors parameters that take into account different types of pollution coming from sewage, agricultural and industrial effluents. Its main objective is to support management decision-making, ensuring that it is based on concrete, local and updated information.
Figure 4

Monitoring sites of the water quality program of the southern coastal strip of the Río de la Plata.

Figure 4

Monitoring sites of the water quality program of the southern coastal strip of the Río de la Plata.

Close modal

The current National Environment Authority (Subsecretary of Environment) coordinates the water quality program and 15 other institutions participate in this program:

  • Ten local coastal governments, which make up the Local Government Information for Information Exchange Network (RIIGLO, by its acronym in Spanish), are responsible for sampling within their respective jurisdictions;

  • Matanza-Riachuelo Basin Authority (ACUMAR) also samples;

  • National Water Institute (INA) and Argentine Naval Prefecture (PNA), both for logistics in reaching the sites by boat and transporting the samples to the laboratory;

  • Water Administration of the Province of Buenos Aires (ADA), the provincial authority on water issues, is one of the laboratories where the samples are analyzed;

  • Aguas Bonaerenses (ABSA) is the provincial's water and sanitation services company which represents the second laboratory in the program;

  • AySA (Argentine Water and Sanitation) is the water and sanitation services company in a large number of municipalities and the City of Buenos Aires, which participated as the third laboratory.

The water quality of the study system is evaluated by using a WQI based on the regulated parameters for recreational use with direct contact and the data generated by the monitoring program. The results are published on the Environmental Information Center of Argentina web platform (CIAM 2024).

In each of the four annual campaigns, 43 sites are sampled along more than 100 km of coastline, and 23 parameters are surveyed to account for different types of contamination, from sewage, agricultural, and industrial sources, as well as the state of eutrophication. Of the 23 parameters, three are measured in situ with a Hach multiparameter sensor (temperature, dissolved oxygen (DO) and pH), four are organoleptic (smell, color, floating materials and foams), and 16 are analyzed in the laboratory (Table 3).

Table 3

Reference values according to regulations for the Río de la Plata

ParameterValue of referenceLocal reference standard of water quality
DO <5 mg/L MVOTMA Decree N° 253/279 of 1979 (MVOTMA 1979
pH 6.5–8.5 ADA Resolution N°42/2006 (ADA 2006
Temperature <35 °C ADA Resolution N°42/2006 (ADA 2006
Smell (not natural) Not noticeable ADA Resolution N°42/2006 (ADA 2006
Color (not natural) Absent ADA Resolution N°42/2006 (ADA 2006
Floating materials Absent ADA Resolution N°42/2006 (ADA 2006
Foams Absent ADA Resolution N°42/2006 (ADA 2006
Faecal coliforms 150 CFU/100 ml ADA Resolution N°42/2006 (ADA 2006
Escherichia coli 126 CFU/100ml ADA Resolution N°42/2006 (ADA 2006
10 Enterococci 33 CFU/100ml ADA Resolution N°42/2006 (ADA 2006
12 BOD5 10 mg/L ADA Resolution N°42/2006 (ADA 2006
13 Nitrate 125 mg/L ADA Resolution N°42/2006 (ADA 2006
14 Ammonia 0.5 mg/L ADA Resolution N°42/2006 (ADA 2006
15 Total phosphorous 0.025 mg/L ADA Resolution N°42/2006 (ADA 2006
16 Microcystin 0.01 mg/L ADA Resolution N°42/2006 (ADA 2006
17 Chlorophyll ‘a’ 0.05 mg/L ADA Resolution N°42/2006 (ADA 2006
18 Total petroleum hydrocarbons 0.05 mg/L ADA Resolution N°42/2006 (ADA 2006
19 Chromium 0.05 mg/L ACUMAR Resolution N° 283/2019 (ACUMAR 2017
20 Cadmium 0.005 mg/L ACUMAR Resolution N° 283/2019 (ACUMAR 2017
21 Turbidity 100 NTU ADA Resolution N°42/2006 (ADA 2006
22 DQO Does not have – 
23 Phosphate Does not have – 
ParameterValue of referenceLocal reference standard of water quality
DO <5 mg/L MVOTMA Decree N° 253/279 of 1979 (MVOTMA 1979
pH 6.5–8.5 ADA Resolution N°42/2006 (ADA 2006
Temperature <35 °C ADA Resolution N°42/2006 (ADA 2006
Smell (not natural) Not noticeable ADA Resolution N°42/2006 (ADA 2006
Color (not natural) Absent ADA Resolution N°42/2006 (ADA 2006
Floating materials Absent ADA Resolution N°42/2006 (ADA 2006
Foams Absent ADA Resolution N°42/2006 (ADA 2006
Faecal coliforms 150 CFU/100 ml ADA Resolution N°42/2006 (ADA 2006
Escherichia coli 126 CFU/100ml ADA Resolution N°42/2006 (ADA 2006
10 Enterococci 33 CFU/100ml ADA Resolution N°42/2006 (ADA 2006
12 BOD5 10 mg/L ADA Resolution N°42/2006 (ADA 2006
13 Nitrate 125 mg/L ADA Resolution N°42/2006 (ADA 2006
14 Ammonia 0.5 mg/L ADA Resolution N°42/2006 (ADA 2006
15 Total phosphorous 0.025 mg/L ADA Resolution N°42/2006 (ADA 2006
16 Microcystin 0.01 mg/L ADA Resolution N°42/2006 (ADA 2006
17 Chlorophyll ‘a’ 0.05 mg/L ADA Resolution N°42/2006 (ADA 2006
18 Total petroleum hydrocarbons 0.05 mg/L ADA Resolution N°42/2006 (ADA 2006
19 Chromium 0.05 mg/L ACUMAR Resolution N° 283/2019 (ACUMAR 2017
20 Cadmium 0.005 mg/L ACUMAR Resolution N° 283/2019 (ACUMAR 2017
21 Turbidity 100 NTU ADA Resolution N°42/2006 (ADA 2006
22 DQO Does not have – 
23 Phosphate Does not have – 

The WQI used is the one created for the Canadian Council of Ministers of the Environment (CCME), which consists of comparing the result of each parameter with the standard of the chosen local regulation. At each site, this comparison is made for the 20 parameters and integrated into a single WQI value.

In this case, we use the ADA Resolution 42/2006 as the standard for most parameters, which is specific for the Río de la Plata and its Maritime Front for recreational use. For two parameters (heavy metals), we use the ACUMAR Resolution 283/2019, which is stricter for these parameters and is for recreational use but for indirect contact (without touching water, just to look at it).

Sampling is carried out at 43 sites along more than 100 km of the river's coastline, from the municipality of Tigre to that of Berisso (10 local governments including CABA) (Table 4).

Table 4

List of monitoring sites in the coastal zone of the Río de la Plata

Local GovernmentSiteCodeLatitudeLongitude
North zone Tigre Canal Villa Nueva y Río Luján TI001 34° 21' 30,38'' 58° 40' 41,59'' 
  Río Lujan y Arroyo Caraguatá TI006 34° 23' 03,01'' 58° 37' 57,04'' 
  Canal Aliviador y Río Lujan TI002 34° 23' 22,09'' 58° 37' 19,74'' 
  Río Carapachay y Arroyo Gallo Fiambre TI003 34° 24' 02,02'' 58° 35' 41,03'' 
  Río Reconquista y Río Lujan TI004 34° 24' 29,02'' 58° 35' 27,02'' 
  Río Tigre y Río Lujan TI005 34° 24' 55,01'' 58° 34' 45,01'' 
  Río Lujan y Canal San Fernando TI007 34° 25' 29,03'' 58° 33' 29,02'' 
  Río Capitán y Río San Antonio TI008 34° 22' 32,02'' 58° 33' 31,03'' 
  Arroyo Abra Vieja y Santa Rosa TI009 34° 23' 12,01'' 58° 33' 41,00'' 
 10 San Fernando Del Arca SF015 34° 26' 20,11'' 58° 32' 11,47'' 
 11 San Isidro Espigón La Farola SI021 34° 26' 59,028'' 58° 30' 16,09'' 
 12  Reserva Ecológica SI022 34° 27' 55,01'' 58° 29' 35,02'' 
 13  Playa Espigón de Pacheco SI024 34° 28' 10,42'' 58° 29' 30,12'' 
 14  Perú Puente SI023 34° 29' 03,01'' 58° 28' 46,02'' 
 15 Vicente López Reserva Barrio El Ceibo VL033 34° 29' 42,04'' 58° 28' 46,02'' 
 16  Puerto de Olivos Espigón VL032 34° 30' 19,91'' 58° 28' 25,39'' 
 17  Costa y Melo VL031 34° 31' 27,01'' 58° 27' 59,00'' 
Center 18 Caba Parque de los Niños CA041 34° 31' 39,36'' 58° 27' 19,69'' 
 19  Costanera Norte - Espigón Abanico CA044 34° 32' 49,52'' 58° 25' 48,83'' 
 20  Club de Pescadores CA046 34° 33' 47,63'' 58° 24' 14,83'' 
 21  Reserva Ecológica Costanera Sur - Playita CA047 34° 36' 45,94'' 58° 20' 26,20'' 
 22  Cuatro bocas- desembocadura del Riachuelo AC001 34° 39' 46,04'' 58° 17' 48,01'' 
South zone 23 Avellaneda Escollera de Propaneros AV054 34° 37' 48,00'' 58° 19' 42,02'' 
 24  Polo Petroquímico Dock Sud AV051 34° 38' 32,03'' 58° 19' 24,02'' 
 25  Arroyo Sarandí AV052 34° 38' 51,00'' 58° 18' 36,00'' 
 26  Costa de Villa Domínico AV055 34° 39' 19,01'' 58° 18' 15,01'' 
 27  Arroyo Santo Domingo AV053 34° 39' 46,04'' 58° 17' 48,01'' 
 28 Quilmes Espora QU061 34° 41' 31,02'' 58° 15' 14,00'' 
 29  Náutico QU062 34° 42' 01,04'' 58° 13' 44,00'' 
 30  Pejerrey Club QU063 34° 42' 24,98'' 58° 13' 04,01'' 
 31 Berazategui Calle 14 y Costa - Salida cloaca BZ078 34° 44' 39,01'' 58° 10' 38,03'' 
 32  Puerto Trinidad calle 47 BZ077 34° 44' 58,52'' 58° 07' 57,72'' 
 33  Costanera Hudson Calle 63 BZ080 34° 45' 10,80'' 58° 06' 29,81'' 
 34 Ensenada Reserva Punta Lara - Boca Cerrada EN_adic 34° 46' 48,5'' 58° 01' 03,5'' 
 35  Camping Eva Perón EN081 34° 49' 14,56'' 57° 57' 55,15'' 
 36  Toma de agua Club de Pesca EN082 34° 49' 39,94'' 57° 56' 38,44'' 
 37  Arroyo El Gato EN083 34° 50' 31,09'' 57° 56' 05,78'' 
 38  Ensenada Prefectura Isla Santiago EN084 34° 50' 02,08'' 57° 52' 48,76'' 
 39 BERISSO Balneario Palo Blanco BS092 34° 51' 20,91'' 57° 50' 17,32'' 
 40  Diagonal 66 (descarga cloaca) BS095 34° 52' 01,99'' 57° 49' 00,01'' 
 41  Playa La Bagliardi BS091 34° 52' 23,02'' 57° 48' 38,02'' 
 42  Balneario Municipal BS094 34° 55' 5,98'' 57° 44' 26,99'' 
 43  Playa La Balandra BS093 34° 55' 41,59'' 57° 43' 02,24'' 
Local GovernmentSiteCodeLatitudeLongitude
North zone Tigre Canal Villa Nueva y Río Luján TI001 34° 21' 30,38'' 58° 40' 41,59'' 
  Río Lujan y Arroyo Caraguatá TI006 34° 23' 03,01'' 58° 37' 57,04'' 
  Canal Aliviador y Río Lujan TI002 34° 23' 22,09'' 58° 37' 19,74'' 
  Río Carapachay y Arroyo Gallo Fiambre TI003 34° 24' 02,02'' 58° 35' 41,03'' 
  Río Reconquista y Río Lujan TI004 34° 24' 29,02'' 58° 35' 27,02'' 
  Río Tigre y Río Lujan TI005 34° 24' 55,01'' 58° 34' 45,01'' 
  Río Lujan y Canal San Fernando TI007 34° 25' 29,03'' 58° 33' 29,02'' 
  Río Capitán y Río San Antonio TI008 34° 22' 32,02'' 58° 33' 31,03'' 
  Arroyo Abra Vieja y Santa Rosa TI009 34° 23' 12,01'' 58° 33' 41,00'' 
 10 San Fernando Del Arca SF015 34° 26' 20,11'' 58° 32' 11,47'' 
 11 San Isidro Espigón La Farola SI021 34° 26' 59,028'' 58° 30' 16,09'' 
 12  Reserva Ecológica SI022 34° 27' 55,01'' 58° 29' 35,02'' 
 13  Playa Espigón de Pacheco SI024 34° 28' 10,42'' 58° 29' 30,12'' 
 14  Perú Puente SI023 34° 29' 03,01'' 58° 28' 46,02'' 
 15 Vicente López Reserva Barrio El Ceibo VL033 34° 29' 42,04'' 58° 28' 46,02'' 
 16  Puerto de Olivos Espigón VL032 34° 30' 19,91'' 58° 28' 25,39'' 
 17  Costa y Melo VL031 34° 31' 27,01'' 58° 27' 59,00'' 
Center 18 Caba Parque de los Niños CA041 34° 31' 39,36'' 58° 27' 19,69'' 
 19  Costanera Norte - Espigón Abanico CA044 34° 32' 49,52'' 58° 25' 48,83'' 
 20  Club de Pescadores CA046 34° 33' 47,63'' 58° 24' 14,83'' 
 21  Reserva Ecológica Costanera Sur - Playita CA047 34° 36' 45,94'' 58° 20' 26,20'' 
 22  Cuatro bocas- desembocadura del Riachuelo AC001 34° 39' 46,04'' 58° 17' 48,01'' 
South zone 23 Avellaneda Escollera de Propaneros AV054 34° 37' 48,00'' 58° 19' 42,02'' 
 24  Polo Petroquímico Dock Sud AV051 34° 38' 32,03'' 58° 19' 24,02'' 
 25  Arroyo Sarandí AV052 34° 38' 51,00'' 58° 18' 36,00'' 
 26  Costa de Villa Domínico AV055 34° 39' 19,01'' 58° 18' 15,01'' 
 27  Arroyo Santo Domingo AV053 34° 39' 46,04'' 58° 17' 48,01'' 
 28 Quilmes Espora QU061 34° 41' 31,02'' 58° 15' 14,00'' 
 29  Náutico QU062 34° 42' 01,04'' 58° 13' 44,00'' 
 30  Pejerrey Club QU063 34° 42' 24,98'' 58° 13' 04,01'' 
 31 Berazategui Calle 14 y Costa - Salida cloaca BZ078 34° 44' 39,01'' 58° 10' 38,03'' 
 32  Puerto Trinidad calle 47 BZ077 34° 44' 58,52'' 58° 07' 57,72'' 
 33  Costanera Hudson Calle 63 BZ080 34° 45' 10,80'' 58° 06' 29,81'' 
 34 Ensenada Reserva Punta Lara - Boca Cerrada EN_adic 34° 46' 48,5'' 58° 01' 03,5'' 
 35  Camping Eva Perón EN081 34° 49' 14,56'' 57° 57' 55,15'' 
 36  Toma de agua Club de Pesca EN082 34° 49' 39,94'' 57° 56' 38,44'' 
 37  Arroyo El Gato EN083 34° 50' 31,09'' 57° 56' 05,78'' 
 38  Ensenada Prefectura Isla Santiago EN084 34° 50' 02,08'' 57° 52' 48,76'' 
 39 BERISSO Balneario Palo Blanco BS092 34° 51' 20,91'' 57° 50' 17,32'' 
 40  Diagonal 66 (descarga cloaca) BS095 34° 52' 01,99'' 57° 49' 00,01'' 
 41  Playa La Bagliardi BS091 34° 52' 23,02'' 57° 48' 38,02'' 
 42  Balneario Municipal BS094 34° 55' 5,98'' 57° 44' 26,99'' 
 43  Playa La Balandra BS093 34° 55' 41,59'' 57° 43' 02,24'' 

One sample is taken for each parameter in each of the four annual campaigns. Considering that there are 43 sites per campaign and that each site requires about six containers for all parameters, about 258 samples are transported and processed on each day of the campaign.

The analyses of only 10 parameters were carried out during the first years (2004–2012). Since 2013, additional parameters have been included, and since 2018, a total of 23 parameters have been recorded. The WQI has been calculated from 2013 to the present. All results are published at the CIAM.

According to the analysis of WQI results since 2013, the water quality of the coastal area of the Río de la Plata in Argentina has deteriorated and there are no sites suitable for recreational use with direct contact. In 2013, 71.8% of sites were recorded as extremely deteriorated, 23.1% as very deteriorated, 2.5% as deteriorated and 2.6% as slightly deteriorated. In 2023, almost half of the total sites were recorded as extremely deteriorated and the other half as very deteriorated, there were no other classes of quality registered. Although the percentage of sites in the worst quality decreased, the mildest types of deterioration disappeared (Figure 5).
Figure 5

Percentage of WQI classes in 2013 and 2023 at the Argentinian coast of the Río de la Plata regarding sites suitable for recreational use with direct contact.

Figure 5

Percentage of WQI classes in 2013 and 2023 at the Argentinian coast of the Río de la Plata regarding sites suitable for recreational use with direct contact.

Close modal
Figure 6

Percentage of monitoring sites not meeting water quality standards for each parameter regarding suitability for recreational use with direct contact (2023). Source: Subsecretary of Environment (Federal Government).

Figure 6

Percentage of monitoring sites not meeting water quality standards for each parameter regarding suitability for recreational use with direct contact (2023). Source: Subsecretary of Environment (Federal Government).

Close modal

The most contaminated sites are systematically repeated and they are BS095 in Berisso (due to sewage effluents discharge coming from La Plata, Berisso and Ensenada); SI023 in San Isidro (despite having a very well-known and popular café on the river and a kitesurfing school, and being a central point where many people gather to practice various water sports) and, finally, but not least important, BZ077 and BZ078 in Berazategui (sites close to the discharge of sewage effluents generated by the population of the entire City of Buenos Aires and numerous municipalities of surrounding of the City of Buenos Aires). The parameters furthest from the standard values were the three bacteriological parameters: faecal coliforms, Enterococci and Escherichia coli, followed by total phosphorus and ammonium as the most important (Figure 6).

All these parameters reflect the deficiency of the sewage systems, both the sewer network and the treatment of sewage arriving via the network.

To assess the potential impact of the new sanitary infrastructure currently under construction in the study area, we considered four scenarios of water quality (three of them based on a reduction in sewage effluent discharge):

  • - Scenario 1: no action (no new sanitary infrastructure developed).

  • - Scenario 2: The sewage infrastructure is somewhat increased showing an improvement of 25% in bacteriological parameters and a consequent 25% improvement in the parameters ammonium and total phosphorous (TP).

  • - Scenario 3: The sewage infrastructure increases significantly showing an improvement of 50% in bacteriological parameters, ammonium and TP, and consequently an improvement of 25% in chlorophyll and microcystin parameters.

  • - Scenario 4: The entire necessary sewage infrastructure is carried out, which reflects a 100% improvement in bacteriological parameters and a 75% decrease of ammonium, TP, chlorophyll and microcystin (the decrease of these last four parameters was not 100% because they have different sources).

The following changes in the WQI were observed (Table 5 and Figure 7):
  • Scenario 1: No changes in the WQI, with approximately 50% of sites remaining in the most deteriorated classes of water quality.

  • Scenario 2: Similar to Scenario 1, but with some records showing slightly improved water quality.

  • Scenario 3: Similar to Scenario 2, but with more records indicating deteriorated water quality.

  • Scenario 4: In this scenario, there are no longer any sites with the most deteriorated water quality. Over 80% of sites reflect slightly deteriorated quality, and 5% of sites are deemed suitable for the intended use. This indicates that while sewage pollution remains the primary cause of current water pollution, other sources also impact water quality and must be addressed to achieve further improvements.

  • Since there is only one sample per site for each parameter, factor 2 (frequency of failed samples) in the WQI calculation formula, is equal to factor 1 (scope) (Table 5).

Figure 7

Percentage of WQI classes for scenarios 1–4 at the Argentinian coast of the Río de la Plata regarding sites suitable for recreational use with direct contact.

Figure 7

Percentage of WQI classes for scenarios 1–4 at the Argentinian coast of the Río de la Plata regarding sites suitable for recreational use with direct contact.

Close modal
Figure 8

Water quality in relation to compliance with Use IV (see Table 6, Table 3), during the period May 2022–2023, for surface water. The formula used for the calculation of the surface WQI is presented in Table 1 (Equation (1)). Raw data coming from the public database of ACUMAR.

Figure 8

Water quality in relation to compliance with Use IV (see Table 6, Table 3), during the period May 2022–2023, for surface water. The formula used for the calculation of the surface WQI is presented in Table 1 (Equation (1)). Raw data coming from the public database of ACUMAR.

Close modal
Table 5

WQI and Factor 1 (scope), Factor 2 (frequency) and Factor 3 (amplitude) for scenarios 1, 2, 3 and 4

Scenario 1
Scenario 2
Scenario 3
Scenario 4
WQIF1F2F3WQIF1F2F3WQIF1F2F3WQIF1F2F3
TI001 58 26 26 63 62 26 26 54 68 26 26 42 91 11 11 
TI006 46 26 26 86 48 26 26 81 52 26 26 74 91 11 11 
TI002 42 32 32 89 44 32 32 86 47 32 32 80 86 11 11 20 
TI003 46 32 32 82 49 32 32 77 53 32 32 68 91 11 11 
TI004 37 42 42 91 38 42 42 89 41 42 42 84 80 21 21 16 
TI005 33 47 47 94 34 47 47 93 36 47 47 89 71 32 32 21 
TI007 38 42 42 89 40 42 42 86 43 42 42 80 77 26 26 16 
TI008 58 21 21 67 61 21 21 60 67 21 21 48 95 
TI009 64 26 26 50 69 26 26 38 77 21 21 26 91 11 11 
10 SF015 42 28 28 92 43 28 28 90 46 28 28 86 89 11 11 12 
11 SI021                 
12 SI022 53 32 32 69 58 26 32 62 64 26 26 51 90 11 11 
13 SI024 48 26 26 82 51 26 26 77 55 26 26 68 91 14 
14 SI023 37 33 33 98 37 33 33 98 38 33 33 97 89 11 11 
15 VL033 44 32 32 87 46 32 32 83 51 26 26 76 88 11 11 14 
16 VL032 40 32 32 94 41 32 32 92 43 32 32 88 90 11 11 
17 VL031 41 32 32 92 42 32 32 90 44 32 32 85 89 11 11 11 
18 CA041 39 26 26 99 39 26 26 98 40 26 26 97 93 
19 CA044 41 32 32 92 42 32 32 90 46 26 26 85 95 
20 CA046 42 26 26 93 43 26 26 91 47 21 21 87 94 
21 CA047 52 26 26 75 55 26 26 69 60 26 26 59 91 11 11 
22 AC001 29 53 53 97 30 53 53 96 31 53 53 94 67 37 37 25 
23 AV054 45 32 32 85 47 32 32 81 51 32 32 73 83 16 16 19 
24 AV051 48 32 32 79 50 32 32 73 55 32 32 64 84 11 11 24 
25 AV052 49 32 32 76 52 32 32 70 57 32 32 59 86 11 11 19 
26 AV055 45 37 37 80 47 37 37 75 54 32 32 65 88 11 11 13 
27 AV053 48 32 32 79 48 37 32 73 55 32 32 63 83 16 16 19 
28 QU061 51 37 37 67 54 37 37 60 62 32 32 48 88 11 11 14 
29 QU062 52 26 26 75 55 26 26 68 63 21 21 57 85 25 
30 QU063 58 26 26 62 62 26 26 55 70 21 21 42 94 
31 BZ078 27 56 56 98 27 56 56 98 28 56 56 97 66 31 31 39 
32 BZ077 32 50 50 93 33 50 50 91 38 44 44 88 78 19 19 28 
33 BZ080 43 38 38 83 45 38 38 79 49 38 38 71 85 13 13 19 
34 EN-adic 48 38 38 72 50 38 38 68 59 31 31 57 87 13 13 15 
35 EN081 53 37 37 63 55 37 37 57 63 32 32 46 85 16 16 14 
36 EN082 57 32 32 59 60 32 32 54 64 32 32 43 85 16 16 14 
37 EN083 37 37 37 95 38 37 37 94 40 37 37 91 83 16 16 19 
38 EN084 52 32 32 71 55 32 32 63 63 26 26 52 93 
39 BS092 41 32 32 92 42 32 32 90 44 32 32 86 89 11 11 11 
40 BS095 29 53 53 98 29 53 53 97 30 53 53 96 67 32 32 36 
41 BS091 42 32 32 89 42 37 32 86 47 32 32 80 86 11 11 20 
42 BS094 56 37 37 57 59 37 37 49 64 37 37 35 86 16 16 
43 BS093 51 26 26 77 54 26 26 71 59 26 26 60 84 27 
Scenario 1
Scenario 2
Scenario 3
Scenario 4
WQIF1F2F3WQIF1F2F3WQIF1F2F3WQIF1F2F3
TI001 58 26 26 63 62 26 26 54 68 26 26 42 91 11 11 
TI006 46 26 26 86 48 26 26 81 52 26 26 74 91 11 11 
TI002 42 32 32 89 44 32 32 86 47 32 32 80 86 11 11 20 
TI003 46 32 32 82 49 32 32 77 53 32 32 68 91 11 11 
TI004 37 42 42 91 38 42 42 89 41 42 42 84 80 21 21 16 
TI005 33 47 47 94 34 47 47 93 36 47 47 89 71 32 32 21 
TI007 38 42 42 89 40 42 42 86 43 42 42 80 77 26 26 16 
TI008 58 21 21 67 61 21 21 60 67 21 21 48 95 
TI009 64 26 26 50 69 26 26 38 77 21 21 26 91 11 11 
10 SF015 42 28 28 92 43 28 28 90 46 28 28 86 89 11 11 12 
11 SI021                 
12 SI022 53 32 32 69 58 26 32 62 64 26 26 51 90 11 11 
13 SI024 48 26 26 82 51 26 26 77 55 26 26 68 91 14 
14 SI023 37 33 33 98 37 33 33 98 38 33 33 97 89 11 11 
15 VL033 44 32 32 87 46 32 32 83 51 26 26 76 88 11 11 14 
16 VL032 40 32 32 94 41 32 32 92 43 32 32 88 90 11 11 
17 VL031 41 32 32 92 42 32 32 90 44 32 32 85 89 11 11 11 
18 CA041 39 26 26 99 39 26 26 98 40 26 26 97 93 
19 CA044 41 32 32 92 42 32 32 90 46 26 26 85 95 
20 CA046 42 26 26 93 43 26 26 91 47 21 21 87 94 
21 CA047 52 26 26 75 55 26 26 69 60 26 26 59 91 11 11 
22 AC001 29 53 53 97 30 53 53 96 31 53 53 94 67 37 37 25 
23 AV054 45 32 32 85 47 32 32 81 51 32 32 73 83 16 16 19 
24 AV051 48 32 32 79 50 32 32 73 55 32 32 64 84 11 11 24 
25 AV052 49 32 32 76 52 32 32 70 57 32 32 59 86 11 11 19 
26 AV055 45 37 37 80 47 37 37 75 54 32 32 65 88 11 11 13 
27 AV053 48 32 32 79 48 37 32 73 55 32 32 63 83 16 16 19 
28 QU061 51 37 37 67 54 37 37 60 62 32 32 48 88 11 11 14 
29 QU062 52 26 26 75 55 26 26 68 63 21 21 57 85 25 
30 QU063 58 26 26 62 62 26 26 55 70 21 21 42 94 
31 BZ078 27 56 56 98 27 56 56 98 28 56 56 97 66 31 31 39 
32 BZ077 32 50 50 93 33 50 50 91 38 44 44 88 78 19 19 28 
33 BZ080 43 38 38 83 45 38 38 79 49 38 38 71 85 13 13 19 
34 EN-adic 48 38 38 72 50 38 38 68 59 31 31 57 87 13 13 15 
35 EN081 53 37 37 63 55 37 37 57 63 32 32 46 85 16 16 14 
36 EN082 57 32 32 59 60 32 32 54 64 32 32 43 85 16 16 14 
37 EN083 37 37 37 95 38 37 37 94 40 37 37 91 83 16 16 19 
38 EN084 52 32 32 71 55 32 32 63 63 26 26 52 93 
39 BS092 41 32 32 92 42 32 32 90 44 32 32 86 89 11 11 11 
40 BS095 29 53 53 98 29 53 53 97 30 53 53 96 67 32 32 36 
41 BS091 42 32 32 89 42 37 32 86 47 32 32 80 86 11 11 20 
42 BS094 56 37 37 57 59 37 37 49 64 37 37 35 86 16 16 
43 BS093 51 26 26 77 54 26 26 71 59 26 26 60 84 27 

Improving bacteriological quality would require investments in sewage transport and treatment, which would also reduce total phosphorus and nitrate levels, consequently lowering chlorophyll ‘a’ and microcystin concentrations included in the WQI calculation. However, the estimated decreases in these parameters need validation with new data from the water quality program of the southern coastal strip of the Río de la Plata.

The current water quality monitoring program, along with the implementation of a WQI, provides stakeholders with clear and accessible information. The findings highlight a significant deterioration in water quality along the coastal area of the Río de la Plata, prompting a strong recommendation to expand the number and capacity of sewage treatment plants, as the existing infrastructure is inadequate. Additionally, it is crucial to enhance the coverage of the sewage network in urban areas.

In this context, it is noteworthy that during 2024, the government planned to improve the sewage network and effluent treatment systems through the implementation of the ‘Riachuelo System’ in Buenos Aires City and Greater Buenos Aires (extending to Berazategui) (AYSA 2024). If successfully executed, this initiative could lead to scenarios 2 or 3, underscoring the importance of continued monitoring in this region to assess the effectiveness of these structural measures and their impact on water quality.

Conversely, in the southern region (from Berazategui and beyond), no initiatives to improve the sewage network or effluent treatment are currently known. It is therefore strongly recommended that this issue be prioritized on the authorities' agenda and allocated sufficient budgetary resources.

The WQI can be a tool for generating a more horizontal understanding of water quality, for both experts and the general public, but also as a strategic tool for directing necessary works according to the simulation of scenarios where certain parameters are improved and thus how this is reflected in changes in water quality.

Matanza-Riachuelo basin

The Matanza-Riachuelo basin is the emblematic example of an urban contaminated basin. Its main collector, the Matanza-Riachuelo River, receives, along 64 km, daily non-treated or deficiently treated domestic, sewage and industrial effluents. Two-thirds of its mean flow corresponds to them (ACUMAR 2024a).

It is the most challenging system for environmental management in Argentina. Within its 2,047.86 km2, 4,703,058 people reside, representing approximately 10% of the country's population. It is the most industrialized and urbanized area of the country, where three jurisdictions have to articulate: the Federal Government, Buenos Aires province and the City of Buenos Aires. Because of the concerning environmental situation of this basin, the Matanza-Riachuelo Basin Authority (ACUMAR) was established in 2006 through Law No. 26168. This organization is an autonomous, self-sufficient and interjurisdictional entity that coordinates efforts with the three governments that have jurisdiction over the basin's territory.

In 2008, the Supreme Court of Justice of the Nation (SCJN) ordered ACUMAR to implement a cleanup plan in response to the judicial case known as the ‘Mendoza Case’ (CSJN 2008), a claim filed in 2004 by a group of residents. This plan, called the Comprehensive Environmental Cleanup Plan (PISA), is the document that guides the work of ACUMAR, enabling coordinated action among the various stakeholders working to resolve the issues in the basin. It is organized by different lines of action with specific projects, aiming to ensure the improvement of the inhabitants' quality of life, the restoration of the environment in all its components (water, air and soil) and the prevention of damage with a sufficient and reasonable degree of prediction (ACUMAR 2024b).

The implementation of the cleanup plan can be followed by the PISA Monitor, which centralizes information about the advances in each axis of the plan, making available to the public the main works and actions, the results of the Indicator System and the necessary budgetary investment for its fulfillment.

The Indicator System, ruled by ACUMAR Resolution 209/2023, measures the progress in the cleanup of the basin. This regulatory instrument includes a list of indicators and publication schedule and methodological sheets.

The presented information is organized around 10 axes in order to facilitate communication of the progress in its compliance: industrial control, housing solutions, environmental quality, drinking water and sewage treatment, landfill treatment, water management, cleaning of margins and towpaths, environmental health, public information and context indices.

Four indicators have been selected for the environmental quality axes: surface WQI in relation to compliance with Use IV (recreation without direct contact); DO; concentration in surface water; nitrate concentration in groundwater and air quality index. These indicators fulfill the SCJN's ruling (8/7/2008), through Order III – Industrial Pollution, point VIII, that ordered ACUMAR to publicly present information, updated quarterly, on the state of surface and underground water, in addition to the air quality of the basin.

The methodological sheet of Annex III of Resolution 209/2023 (ACUMAR 2023a) presents Indicator N° 12 surface WQI in relation to compliance with Use IV. It contains a short description of the indicator; related mandate; related SDG; relevance for decision-making; category; scope; limitations; formula; units of measurement; description of the variables that make up the indicator; calculation methodology; scale; data source; publication frequency; available series; intra/inter-institutional coordination requirements for data flow; responsible entity; type of results presentation and complementary information.

The indicator shows the status of surface water quality in the Matanza-Riachuelo basin, associated with the compliance of the target values for Use IV derived from ACUMAR Resolution 283/2019. It is based on the application of an internationally recognized index, developed by the CCME. It primarily contributes to the compliance of Mandate III – Industrial Pollution, point VIII (ACUMAR 2023b).

The indicator is relevant for decision-making. It provides a simple measure of surface water quality, easily understandable by the public. Additionally, it allows the evaluation of the degree of compliance with the target values designated by current regulations. Thus, it quickly identifies out-of-range variables and their frequency of occurrence, serving as a tool to analyze trends and highlight specific environmental conditions. It facilitates the assessment of the effectiveness of the application of these regulatory parameters, the execution of programs and/or the implementation of associated public policies. Lastly, it enables the examination of changes over time at each specific point, as well as comparisons between different sites in the same period (ACUMAR 2023a).

The indicator measures the state of water quality for each monitoring station (EM), based on the consideration of 10 parameters regulated for Use IV in Resolution 283/2019, providing a synthetic result that reflects water quality based on compliance with the concentrations for that Use. The measurement period is from June of one year to May of the next, to include all seasonal variability in the calculation.

The methodological sheet also presents the limitations of the indicator: It does not allow direct cause-effect interpretations. These are complex and difficult because water bodies are dynamic and living systems, where different variables fluctuate, not only seasonally, but even daily, due to both natural and anthropogenic causes. Additionally, given the dynamic nature of a lotic system, it is not possible to extrapolate the characteristics of one site to another section or watercourse. Furthermore, the information used to calculate this index is based on manual monitoring that denotes a specific characterization of the moment the sample was taken for that particular site. Finally, the index does not provide compliance or non-compliance rating for Use IV at each EM but integrates the information into a gradual result of surface water quality status by comparing it to the target concentrations established for that Use.

The formula used for the calculation of the surface WQI is presented in Table 1 (Equation (1)) and was described in the WQIs section.

The three factors of the index: Scope (F1), Frequency (F2) and Amplitude (F3) are calculated from the comparison of the measured information with the target concentrations of the 10 parameters regulated for Use IV, as established in Resolution 283/2019 (ACUMAR 2019; see Table 6).

Table 6

Parameters regulated for Use IV, as established in Resolution 283/2019 (ACUMAR 2019)

pH 6 < pH < 9 
Temperature (°C) <35 °C 
Dissolved oxygen (DO) (mg/L) >2 mg/L 
Biological oxygen demand (BOD5) (mg/L) Target value < 15 mg/L 
Total phosphorus (mg/L) <5 mg/L 
Total sulfides (mg/L) <1 mg/L 
Detergents (SAAM) (mg/L) <5 mg/L 
Phenolic substances (mg/L) <1 mg/L 
Total hydrocarbons (mg/L) <10 mg/L 
Total cyanides (mg/L) <0.1 mg/L 
pH 6 < pH < 9 
Temperature (°C) <35 °C 
Dissolved oxygen (DO) (mg/L) >2 mg/L 
Biological oxygen demand (BOD5) (mg/L) Target value < 15 mg/L 
Total phosphorus (mg/L) <5 mg/L 
Total sulfides (mg/L) <1 mg/L 
Detergents (SAAM) (mg/L) <5 mg/L 
Phenolic substances (mg/L) <1 mg/L 
Total hydrocarbons (mg/L) <10 mg/L 
Total cyanides (mg/L) <0.1 mg/L 
Table 7

Results of the evaluation of the surface water quality in relation to compliance with Use IV (May 2022–2023)

Station numberLocationNumber of samplesF1F2F3WQI
39 Cebey Creek (Upper basin) 22 87 
41 Cebey Creek (Lower basin) 56 34 72 44 
42 Rodriguez Creek (Upper basin) 22 24 29 75 
68 Rodriguez Creek (Lower basin) 12 92 
62 Cañuelas Creek 14 12 89 
33 Navarrete Creek 100 
Matanza River (Upper basin) 29 17 19 78 
Chacon Creek (Lower basin) 29 10 14 81 
37 Morales Creek 12 92 
47 Cañada Pantanosa Creek 12 92 
48 Barreiro Creek 11 93 
Morales Creek (Lower basin) 100 
Matanza River (Middle basin) 33 32 19 71 
10 Aguirre Creek 14 90 
76 Susana Creek (Upper basin) 11 93 
77 Dupuy Creek 20 11 86 
11 Don Mario Creek (Lower basin) 20 12 16 84 
63 Ortega Creek 30 20 40 69 
72 Discharge of Rocha lagoon to Matanza River 10 94 
12 Matanza River (Richieri Highway) 33 19 25 74 
14 Santa Catalina Creek 20 15 37 74 
15 Matanza River (Lower basin) 20 21 16 81 
13 Old bed of Matanza River 20 10 13 85 
16 Del Rey Creek 20 19 22 80 
17 Riachuelo (Pte. La Noria) 20 17 85 
19 Cildañez Creek 20 23 82 
21 Pluvial discharge to Riachuelo 20 25 29 75 
20 Pluvial discharge to Riachuelo 20 17 25 79 
23 Erezcano conduct 30 31 22 72 
22 Pluvial discharge of Millan canal to Riachuelo 20 18 16 82 
24 Riachuelo (Uriburu bridge) 30 26 19 74 
25 Teuco Creek 33 31 25 70 
30 Riachuelo (Old Pueyrredon bridge) 30 28 14 75 
Station numberLocationNumber of samplesF1F2F3WQI
39 Cebey Creek (Upper basin) 22 87 
41 Cebey Creek (Lower basin) 56 34 72 44 
42 Rodriguez Creek (Upper basin) 22 24 29 75 
68 Rodriguez Creek (Lower basin) 12 92 
62 Cañuelas Creek 14 12 89 
33 Navarrete Creek 100 
Matanza River (Upper basin) 29 17 19 78 
Chacon Creek (Lower basin) 29 10 14 81 
37 Morales Creek 12 92 
47 Cañada Pantanosa Creek 12 92 
48 Barreiro Creek 11 93 
Morales Creek (Lower basin) 100 
Matanza River (Middle basin) 33 32 19 71 
10 Aguirre Creek 14 90 
76 Susana Creek (Upper basin) 11 93 
77 Dupuy Creek 20 11 86 
11 Don Mario Creek (Lower basin) 20 12 16 84 
63 Ortega Creek 30 20 40 69 
72 Discharge of Rocha lagoon to Matanza River 10 94 
12 Matanza River (Richieri Highway) 33 19 25 74 
14 Santa Catalina Creek 20 15 37 74 
15 Matanza River (Lower basin) 20 21 16 81 
13 Old bed of Matanza River 20 10 13 85 
16 Del Rey Creek 20 19 22 80 
17 Riachuelo (Pte. La Noria) 20 17 85 
19 Cildañez Creek 20 23 82 
21 Pluvial discharge to Riachuelo 20 25 29 75 
20 Pluvial discharge to Riachuelo 20 17 25 79 
23 Erezcano conduct 30 31 22 72 
22 Pluvial discharge of Millan canal to Riachuelo 20 18 16 82 
24 Riachuelo (Uriburu bridge) 30 26 19 74 
25 Teuco Creek 33 31 25 70 
30 Riachuelo (Old Pueyrredon bridge) 30 28 14 75 

The spatial unit or scale used by the indicator is the manual point monitoring station (EM) of the ACUMAR Surface Water and Sediment Monitoring Network, distributed in the upper, middle, and lower basins. The Environmental Quality Coordination of ACUMAR provides the data series for the calculation of the indicator, which is published annually since 2010.

In order to do this in a sustainable manner, the following requirements must be fulfilled:

  • 1. The development of systematic sampling campaigns and the determination of the parameters defined for Use IV.

  • 2. The obtained information must be processed and validated beforehand to perform the necessary calculations for the preparation of the WQI based on that presented in Equation (1) of Table 1.

  • 3. At least four campaigns per defined period are required, with information on the 10 parameters related to Use IV in each sampling. However, the WQI can be calculated with a minimum of three campaigns per period and/or seven parameters per sampling, provided that any deviation from the optimal situation is clarified. With values lower than those expressed above, the respective calculation cannot be presented.

The responsible entity of the evaluation of the indicator is the Environmental Quality Coordination of ACUMAR.

Manual monitoring stations (MS) are presented in a map of the Matanza-Riachuelo basin, identifying the sub-basins into which it is divided. Water quality is represented by a chromatic scale corresponding to the five intervals of surface water quality, as indicated previously, for the last sampled period (Figure 8).

Nine percent of the monitored stations during this period had excellent water quality; 51.6% were good; 36.4% were fair and 3% (one station) were very poor. Main excursions from Use IV objectives come from dissolved oxygen, biochemical oxygen demand and sulfur, the latter one most frequently in the lower basin; showing the influence of organic matter coming from anthropogenic sources (insufficiently treated or non-treated sewage and industrial effluents). Occasionally, phenolic substances and TP, as seen in Cebey Creek (station 41), exceeded their target values, significantly decreasing water quality by 43%.

These results show an improvement of water quality for Use IV, regarding the last period evaluated by ACUMAR (2021–2022), giving credit to the impact of the actions implemented under the PISA plan of the Matanza-Riachuelo basin since 2010.

Over the past 30 years, WQIs have been incorporated as environmental indicators into the decision-making process within the framework of integrated water resources management in Argentina. They are not only used as tools for analyzing water quality, but also as part of a control panel of indicators that facilitate the planning of new infrastructure projects focused on sanitation; institutional control to meet legally mandated remediation objectives and communication with stakeholders.

D.S.C. conceptualized the study, wrote, reviewed, and edited the article. K.Q., P.M. and F.R. present the Río de la Plata case study.

The authors adhere to the highest ethical standards in relation to research that involves human participants.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

ACUMAR
(
2017
)
Características y valores de parámetros asociados a los usos. Objetivos de calidad establecidos y a establecer en forma progresiva para las aguas superficiales en la cuenca hídrica Matanza-Riachuelo y sus subcuencas (Characteristics and values of parameters associated with uses. Quality objectives established and to be established progressively for surface waters in the Matanza-Riachuelo watershed and its sub-basins). Annex III. Resolución 46-E/2017. Available at: https://www.argentina.gob.ar/normativa/273042_res46_pdf/archivo [Accessed 26 July 2024]
.
ACUMAR
(
2019
)
Resolution N° 283/2019. Available at: https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-283-2019-334281. [Accessed 26 July 2024]
.
ACUMAR
(
2023a
)
Methodological Sheet. Annex III. Resolution 203/2023. INDICADOR N° 12 - Índice de Calidad de Agua Superficial en relación al cumplimiento del Uso IV (INDICATOR N° 12 - Surface Water Quality Index in relation to compliance with Use IV). Available at: https://www.argentina.gob.ar/normativa/389310_res209-4_pdf/archivo [Accessed 26 July 2024]
.
ACUMAR
(
2023b
)
Objectives and goals for compliance with the ruling of the Supreme Court of Justice of the Nation. Annex II. Resolution 203/2023. Available at: https://www.argentina.gob.ar/normativa/389310_res209-2_pdf/archivo [Accessed 26 July 2024]
.
ACUMAR
(
2024a
)
Características de la Cuenca Matanza Riachuelo (Characteristics of the Matanza-Riachuelo Basin). Available at: https://www.acumar.gob.ar/caracteristicas-cuenca-matanza-riachuelo/#:∼:text=El%20Matanza%20Riachuelo%20es%20un,la%20provincia%20de%20Buenos%20Aires [Accessed 26 July 2024]
.
ACUMAR
(
2024b
)
Monitor Plan Integral de Saneamiento Ambiental (Monitor Comprehensive Environmental Sanitation Plan). Available at: https://monitorpisa.acumar.gob.ar/ [Accessed 26 July 2024]
.
ADA
(
2006
)
Valores de referencia de calidad de aguas dulces y marinas para la protección de la biota acuática, para agua de uso recreativo en la zona de uso exclusivo del Río de la Plata y su frente marítimo (Reference values for the quality of fresh and marine waters for the protection of aquatic biota, for water for recreational use in the exclusive use zone of the Río de la Plata and its seafront). Resolución N° 42/06. Available at: https://normas.gba.gob.ar/documentos/VNaj1Pu6.pdf [Accessed 26 July 2024]
.
Aguilera
A.
,
Haakonsson
S.
,
Martin
M.
,
Salerno
G.
&
Echenique
R.
(
2018
)
Bloom-forming cyanobacteria and cyanotoxins in Argentina: a growing health and environmental concern
,
Limnologica
,
69
,
103
114
.
ISSN 0075-9511. https://doi.org/10.1016/j.limno.2017.10.006
.
Arias
A.
,
Alvarez
G.
,
Pozo
K.
,
Pribylova
P.
,
Klanova
J.
,
Rodríguez Pirani
L.
,
Picone
A.
,
Alvarez
M.
&
Tombesi
N.
(
2023
)
Beached microplastics at the Bahia Blanca Estuary (Argentina): plastic pellets as potential vectors of environmental pollution by POPs
,
Marine Pollution Bulletin
,
187
,
114520
.
ISSN 0025-326X. https://doi.org/10.1016/j.marpolbul.2022.114520
.
Avila Pérez
P.
,
Cicerone
D.
,
Da Costa Lauria
D.
&
Bedregal
P.
(
2011
)
Propuesta de un Índice de calidad de agua para la región de Latinoamerica y el Caribe (Proposal for a water quality index for the Latin American and Caribbean region)
.
ISBN: 978-612-00-0615-3. Available at: https://www.cnea.gob.ar/cgi-bin/koha/opac-detail.pl?biblionumber=32709 [Accessed 30 July 2024]
.
AYSA
(
2024
)
Sistema Riachuelo
.
Available at
: .
Bundschuh
A.
,
Pérez Carrera
M.
&
Litter
M
. (
2008
)
Distribución del arsénico en la región Ibérica e e Iberoamericana (Distribution of arsenic in the Iberian and Latin American regions). Buenos Aires: Programa Iberoamerican de Ciencia y Tecnología para el Desarrollo
.
CARP (2017) Dragado y balizamiento del Canal Martín García (Dredging and beaconing of the Martín García Channel). Available at: https://www.comisionriodelaplata.org/archivos/docs_pdf/CARP-Reporte-AMBIENTE-PGAO-Monitoreo-N-1.pdf [Accesed 30 June 2024].
CARU
(
2019
)
Calidad de aguas del Río Uruguay (Water quality of Uruguay River). Comité Científico. Comisión Administradora del Río Uruguay. Available at: https://caru.org.uy/nuevositio/wp-content/uploads/2023/12/Calidad-de-aguas-del-rio-Uruguay-2019-r.pdf [Accessed 30 June 2024]
.
CCME (2017) Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index, User's Manual - 2017 Update. In: Canadian environmental quality guidelines, 1999. Winnipeg: Canadian Council of Ministers of the Environment. Available at: https://ccme.ca/en/res/wqimanualen.pdf [Accessed 30 June 2024].
CIAM
(
2024
)
Centro de Información Ambiental (Environmental Information Center). Available at: https://ciam.ambiente.gob.ar/ [Accessed 24 July 2024]
.
Cicerone
D.
,
Magallanes
J.
,
Sánchez Proaño
P.
,
Nader
G.
&
Bedregal Salas
P.
(
2011
)
Manual de gestión de información ambiental: Bases de Datos y Modelización para la Evaluación de la Calidad de Agua de Cuerpos de Aguas Superficiales (Environmental Information Management Manual: Databases and Modeling for the Assessment of Surface Water Quality). ISBN: 978-612-00-0616-0. 122 pp. Available at: https://www.cnea.gob.ar/cgi-bin/koha/opac-detail.pl?biblionumber=32710 [Accessed 30 July 2024]
.
CNA
(
1994
)
Constitución de la Nación Argentina (Constitution of the Argentine Nation). Law N° 24.430. Art. 124. Available at: https://servicios.infoleg.gob.ar/infolegInternet/anexos/0-4999/804/norma.htm [Accessed 30 June 2024]
.
COHIFE
(
2023
)
Principios rectores de Política Hídrica de la República Argentina. Fundamentos del ACUERDO FEDERAL DEL AGUA. (Guiding principles of the Water Policy of the Argentine Republic. Foundations of the FEDERAL WATER AGREEMENT). Available at: https://www.cohife.org.ar/wp-content/uploads/2023/11/PRPH-50.pdf [Accessed 13 July 2024]
.
Costa
J.
,
Massone
H.
,
Martínez
D.
,
Suero
E.
,
Vidal
C.
&
Bedmara
F.
(
2002
)
Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone
,
Agricultural Water Management
,
57
,
33
47
.
CSJN
(
2008
)
Sentencia. Daños derivados de la contaminación ambiental del Río Matanza-Riachuelo (Judgement. Damages resulting from environmental pollution of the Matanza-Riachuelo River). Available at: http://www.saij.gob.ar/corte-suprema-justicia-nacion-federal-ciudad-autonoma-buenos-aires-mendoza-beatriz-silvia-otros-estado-nacional-otros-danos-perjuicios-danos-derivados-contaminacion-ambiental-rio-matanza-riachuelo-fa08000047-2008-07-08/123456789-740-0008-0ots-eupmocsollaf [Accessed 13 July 2024]
.
Dardis
N.
(
2013
)
Principios Rectores de Política Hídrica de la República Argentina: 10 años de participación y consenso (Guiding Principles of Water Policy in the Argentine Republic: 10 years of participation and consensus)/Natalia Verónica Dardis; with the collaboration of César Magnani… [et.al.]
, 1st ed.
Buenos Aires
:
COHIFE
,
84
pp.
ISBN 978-987-29297-8-7. Available at: https://www.cohife.org/advf/documentos/2018/08/5b71e65594326.pdf [Accessed 30 June 2024]
.
Eerkes-Medrano
D.
,
Thompson
R.
&
Aldridge
D.
(
2015
)
Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs
,
Water Research
,
75
,
63
82
.
doi:10.1016/j.watres.2015.02.012
.
FAO
(
2015
)
AQUASTAT – FAO's Global Information System on Water and Agriculture. Country Profile – Argentina. Water Resources. Available at: https://www.fao.org/aquastat/en/countries-and-basins/country-profiles/country/ARG [Accessed 30 June 2024]
.
Giannuzzi
L.
(
2016
)
Current problems with drinking-water quality in Argentina
,
Jacobs Journal of Hydrology
,
2
(
1
),
1
9
.
Gómez
N.
&
Licursi
M.
(
2001
)
The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina
,
Aquatic Ecology
,
35
,
173
181
.
Gonzalez Carman
V.
,
Machain
N.
&
Campagna
C.
(
2015
)
Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study
,
Pergamon-Elsevier Science Ltd; Marine Pollution Bulletin
,
92
,
125
133
.
doi:10.1016/j.marpolbul.2014.12.047
.
Grande Cobián
D.
(
2019
)
Diseño y desarrollo de un reactor químico de hidroxiapatita biológica para la remoción de arsénico del agua de consumo humano de las poblaciones rurales dispersas (Design and Development of a Biological Hydroxyapatite Chemical Reactor for the Removal of Arsenic from Drinking Water in Dispersed Rural Populations)
.
San Martín, Buenos Aires: Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental
.
INDEC
(
2022
)
Resultados finales Censo 2022 (Final results of 2022 Census). Available at: https://censo.gob.ar/index.php/datos_definitivos_total_pais/ [Accessed 30 June 2024]
.
Jaime
P.
,
Menéndez
A.
&
Natale
O.
(
2001
)
Balance y dinámica de nutrientes principales en el Río de la Plata interior (Balance and dynamics of main nutrients in the inland Río de la Plata). INA Project 10.4. Report 1. Available at: https://www.ina.gov.ar/archivos/publicaciones/LH-it_rdplata_balance_sep01.pdf [Accessed 30 June 2024]
.
Licursi
M.
&
Gómez
N.
(
2002
)
Benthic diatoms and some environmental conditions in three lowland streams
,
Annales de Limnologie
,
38
(
2
),
109
118
.
Martínez de Bascaran
G.
(
1979
)
Establecimiento de una Metodología para conocer la Calidad del Agua
,
Bol. Inf. Medio Ambiente
,
9
,
30
51
.
Martínez
D.
,
Moschione
E.
,
Bocanegra
E.
,
Glok Galli
M.
&
Aravena
R.
(
2014
)
Distribution and origin of nitrate in groundwater in an urban and suburban aquifer in Mar del Plata, Argentina
,
Environmental Earth Science
,
72
,
1877
1886
.
https://doi.org/10.1007/s12665-014-3096-x
.
Moschione
E.
(
2011
)
Calidad de Aguas para Consumo Humano: presencia de Nitrato en Aguas Subterráneas. Revisión del estado de situación (Quality of Water for Human Consumption: Presence of Nitrate in Groundwater. Review of the Current Situation)
.
Revista Tecnología y Ciencia
.
Universidad Tecnológica Nacional N°23-66. Buenos Aires
.
MVOTMA
(
1979
)
Prevención de la contaminacion ambiental mediante el control de las aguas (Prevention of environmental pollution through water control). Decreto 253/979. Available at: https://www.impo.com.uy/bases/decretos/253-1979 [Accessed 26 July 2024]
.
Nader
G.
,
Sánchez Proaño
P.
&
Cicerone
D.
(
2013
)
Water quality assessment of a polluted urban river
,
International Journal of Environment and Health
,
6
(4), 307–319.
OECD
(
2019
)
Water Governance in Argentina, OECD Studies on Water
.
Paris
:
OECD Publishing
.
Pizarro
M.
&
Orlando
A.
(
1985
) Distribución de fósforo, nitrógeno y silicio disuelto en el Río de la Plata. (Distribution of Phosphorus, Nitrogen and Dissolved Silice in the Río de la Plata)
.
Buenos Aires
:
Servicio de Hidrografia Naval Secretaría Marina. H-625
, pp.
1
57
.
Pochat
V.
(
2005
)
Entidades de Gestión del Agua a Nivel de Cuencas: Experiencia de Argentina. United Nations Economic Commission for Latin America and the Caribbean, Santiago. Available at: https://repositorio.cepal.org/bitstream/handle/11362/6293/1/S05685_es.pdf
[Accessed 30 June 2024].
Ronda
A.
,
Arias
A.
,
Rimondino
G.
,
Pérez
A.
,
Harte
A.
&
Marcovecchio
J.
(
2021
)
Plastic impacts in Argentina: a critical research review contributing to the global knowledge
,
Current Environmental Health Reports
,
8
,
212
222
.
https://doi.org/10.1007/s40572-021-00323-7
.
Rosas-Castor
J.
,
Guzmán-Mar
J.
,
Hernández-Ramírez
A.
,
Garza-González
M. T.
&
Hinojosa-Reyes
L.
(
2014
)
Arsenic accumulation in maize crop (Zea mays): a review
,
Science of the Total Environment
,
488–489
,
176
187
.
doi:10.1016/j.scitotenv.2014.04.075
.
RSA-CONICET
(
2018
)
Arsénico en agua (Arsenic in wáter). Ciudad Autónoma de Buenos Aires: red de Seguridad Alimentaria – Consejo Nacional de Investigaciones Científicas y Técnicas
.
Buenos Aires
:
CONICET
.
SAYDS
(
2014
)
Programa de calidad de las aguas en la Franja costera sur del Río de la Plata – Creación (Water quality program in the southern coastal strip of the Río de la Plata – Creation). Resolución 520/2014. Available at: https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-520-2014-231049 [Accessed 13 July 2024]
.
SSTD
(
2024
)
Sistema de Soporte para la Toma de Decisiones de la Cuenca del Plata (Decision Support System for the La Plata Basin). Available at: https://cicplata.org/es/noticias/un-nuevo-sistema-soporte-para-la-toma-de-decisiones-de-la-cuenca-del-plata-esta-disponible-online/ [Accessed 30 June 2024]
.
Urseler
N.
,
Bachetti
R.
,
Morgante
V.
,
Agostini
E.
&
Morgante
C.
(
2022
)
Groundwater quality and vulnerability in farms from agricultural-dairy basin of the Argentine Pampas
,
Environmental Science and Pollution Research
,
29
,
63655
63673
.
https://doi.org/10.1007/s11356-022-20073-9
.
Vázquez
V.
,
Serrano
A.
&
Cestti
R
. &
Contributions from the Stockholm International Water Institute
. (
2021
)
Water Matters: Resilient, Inclusive and Green Growth Through Water Security in Latin America
.
Washington, DC
:
World Bank
.
Vignolo
A.
,
Pochettino
A.
&
Cicerone
D.
(
2006
)
Water quality assessment using remote sensing techniques: Medrano Creek, Argentina
,
Journal of Environmental Management
,
81
,
429
433
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC 4.0), which permits copying, adaptation and redistribution for non-commercial purposes, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc/4.0/).