Most of the mathematical models that are employed to model the performance of bubble columns are based on the assumption that either plug flow or complete mixing conditions prevail in the liquid phase. Although due to the liquid-phase axial dispersion, the actual flow pattern in bubble columns is usually closer to being mixed flow rather than plug flow, but still not completely mixed flow. Therefore, the back flow cell model (BFCM), that hypothesises both back flow and exchange flow to characterise the liquid-phase axial dispersion, is presented as an alternative approach to describe the hydrodynamics and mass transfer of ozone bubble columns. BFCM is easy to formulate and solve. It is an accurate and reliable design model. Transient BFCM consists of NBFCM ordinary-first-order differential equations in which NBFCM unknowns (Yj) are to be determined. That set of equations was solved numerically as NBFCM linear algebraic equations. Steady-state BFCM consists of 3 × NBFCM non-linear algebraic equations in which 3 × NBFCM unknowns (qG,j, Xj, and Yj) are to be determined. Those non-linear algebraic equations were solved numerically using Newton–Raphson technique. Steady-state BFCM was initially tested using the pilot-scale experimental data of Zhou. BFCM provided excellent predictions of the dissolved ozone profiles under different operating conditions for both counter and co-current flow modes.
Skip Nav Destination
Article navigation
Research Article|
March 01 2001
Ozone mass transfer in water treatment: hydrodynamics and mass transfer modeling of ozone bubble columns
M.G. El-Din;
M.G. El-Din
1Department Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2M8
Search for other works by this author on:
D.W. Smith
D.W. Smith
1Department Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2M8
Search for other works by this author on:
Water Supply (2001) 1 (2): 123–130.
Citation
M.G. El-Din, D.W. Smith; Ozone mass transfer in water treatment: hydrodynamics and mass transfer modeling of ozone bubble columns. Water Supply 1 March 2001; 1 (2): 123–130. doi: https://doi.org/10.2166/ws.2001.0029
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00