The aim of this study is to employ a biological aerated filter (BAF) in the treatment of reverse osmosis (RO) concentrate received from reuse of treatment plant wastewater. Furthermore, the influence of chemical oxygen demand (COD)/N ratio on the nutrient removal was analyzed to find the detailed removal pathways of nutrients. The result was found to be high efficiency for biochemical oxygen demand removal (95.86%) compared to that of COD (88.95%) and suspended solids (81.12%). The total phosphorus (TP) (67.66%) and PO4-P (61.42%) removal efficiencies were relatively lower than that of total nitrogen (TN) (81.42%) and NO3-N (76.70%). This may be due to the fact that the biochemical oxygen demand (BOD)/TP ratio (8.01) was relatively low. Decreasing the COD/N ratio decreased TP and PO4-P removal efficiency. However, the removal efficiency of TN and NH4-N was increased from 47.60 to 64.54 and 54.17 to 73.72% with decreasing of COD/N ratio from 8.19 to 7.64, respectively. In addition, the denitrification rate and nitrification rate were increased from 211.8 to 301.0 mg/L d and 87.7 to 109.4 mg/L d, respectively, when COD/N ratios changed from 8.19 to 7.64. Therefore, in order to reuse the RO concentrate, the BAF process could effectively treat the RO concentrate.

You do not currently have access to this content.