Reverse osmosis (RO) membranes based on cellulose acetate (CA), were prepared using a phase inversion technique. To improve the hydrophilicity, salt rejection and water flux of these membranes, a novel grafting of 2-acrylamido-2-methylpropanesulfonic acid (AMPSA) was added on the top surface of the CA-RO membranes. The grafted CA-RO membranes were characterized by Fourier transform infrared spectroscopy (FTIR), contact angle, and scanning electron microscopy techniques. It was found that the contact angles were 58° and 45° for pristine CA and 15 wt% grafted CA-RO membranes, respectively, which suggest an increase in the membrane surface hydrophilicity after grafting. The morphological studies of the surface of the pristine CA-RO membrane revealed a typical ridge-and-valley morphology and displayed a relatively high surface roughness of 337 nm, and a significant decrease at 15 wt% of grafted CA-RO membrane to 7 nm. The effect of the grafting percentages of AMPSA on the water flux and salt rejection was studied using a cross flow RO unit. The salt rejection and water flux of the grafted CA-RO membrane with 15 wt% were 99.03% and 6 L/m2h, respectively.

You do not currently have access to this content.