Anthropogenic organic micropollutants (OMP) occur along the whole urban water cycle including drinking water. Various OMP can be efficiently adsorbed onto activated carbon. In the present study a commercial monolithic adsorber (MA), originally developed for gas treatment, was examined for the removal of OMP from drinking water. As a promising advantage, the adsorber can be introduced into existing pipes without causing substantial pressure losses. The MA was first characterized with scanning electron microscopy and energy dispersive X-ray spectroscopy. Weight loss during incineration at 550 °C indicated an activated carbon content of around 25%. Adsorption isotherms were recorded with milled material of the MA to estimate the capacity of the embedded adsorbent. Long-term flow-through experiments with two different flow rates were conducted to estimate the in-line removal efficiency. At low flow rates removals of 60% benzotriazole, 40% carbamazepine and 30% diclofenac were observed initially followed by a linear increase of effluent concentrations. Calculated loadings after 60 days of operation were e.g. 30 μg benzotriazole per g adsorber or 110 μg benzotriazole per g activated carbon as constituent of the adsorber. For specific applications, MA might be useful for the in-line elimination of OMP within drinking water distribution systems.

You do not currently have access to this content.