The efficiency of sedimentation is dependent on settling tank design and operation, where the streamlined solid–liquid separation results in water of safe potable quality. It is therefore important that the tank design and operation are sufficiently optimised. Sedimentation tanks are commonly overdesigned, leading to unwarranted capital expenditure, and overloading. This study used computational fluid dynamics to model the current conditions of two full-scale sedimentation tanks of different lengths at a large drinking water treatment plant in South Africa, using the shear stress transport turbulence model. The flow dynamics and the polyelectrolyte flocculated particle settling efficiency between the short tank and the long tank were compared. Recirculation zones near the inlet were pronounced in the short tank, which resulted in particles being drawn towards the outlets. The flow in the long tank isolated the inlet and outlet, with low particle volume fractions and particle velocities at the weirs. The particle removal in both tanks was greater than 99%; however, removal was higher in the long tank (99.86%), hence it was more efficient despite greater infrastructure cost. Computational fluid dynamics modelling is a tremendous operational tool which can review the performance of alternative tank designs and provide valuable input into future design.
Skip Nav Destination
Article navigation
Research Article|
December 15 2016
Comparing the flow dynamics and particle settling in full-scale sedimentation tanks of different lengths Available to Purchase
S. Arendze;
1Rand Water, Process Technology, Barrage Road, Vereeniging, Gauteng 1930, South Africa
E-mail: [email protected]
Search for other works by this author on:
M. S. Sibiya
M. S. Sibiya
1Rand Water, Process Technology, Barrage Road, Vereeniging, Gauteng 1930, South Africa
Search for other works by this author on:
Water Supply (2017) 17 (4): 998–1006.
Article history
Received:
June 13 2016
Accepted:
November 02 2016
Citation
S. Arendze, M. S. Sibiya; Comparing the flow dynamics and particle settling in full-scale sedimentation tanks of different lengths. Water Supply 1 July 2017; 17 (4): 998–1006. doi: https://doi.org/10.2166/ws.2016.187
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00