Abstract

In the current work, alumina modified natural zeolite (Z-Al) was used for fluoride adsorption in aqueous solution. Effects of process parameters such as pH, temperature, initial concentration and contact time were investigated. Box–Behnken design was found effective in defining the operating conditions for fluoride sorption onto Z-Al. Confirmatory experiments were conducted to examine the reliability of the regression equation. The predicted (2.261 mg g−1) and experimental (2.289 mg g−1) capacities were found to be similar, demonstrating the accuracy of the model. The fluoride adsorption onto Z-Al was well described by the Freundlich model. Kinetic studies revealed that the adsorption followed a pseudo-second-order reaction. Thermodynamic parameters depicted that the fluoride adsorption on the alumina modified zeolite was a spontaneous and exothermic process. The co-existing ions affected the defluoridation performance significantly. Regeneration of exhausted Z-Al was achieved with H2SO4.

You do not currently have access to this content.