Abstract

The proximity of shallow groundwater systems to sources of contamination usually exposes them to severe environmental threats. Hazardous pollutants that leak from gas stations, landfills, and industrial facilities may eventually reach the underneath shallow groundwater aquifers, posing risks to human health and the environment. Cleaning contaminated groundwater sources has always been a challenge to the local authorities. This is even more challenging when dealing with difficult pollutants such as methyl tertiary butyl ether (MTBE) due its high solubility in water, poor biodegradability, and poor adsorption onto solids. This study aims to assess the efficiency of a pilot groundwater remediation system to treat a shallow aquifer contaminated with MTBE. The in-house designed and fabricated pilot system combines the technology of circulation wells and UV-based advanced oxidation technology for the breakdown and removal of MTBE from water. An ultraviolet/hydrogen peroxide (UV/H2O2) process was used in this study to remove MTBE from water. The concentration of MTBE was reduced from approximately 1,400 μg/L to as low as 34 μg/L within 30 minutes, with a treatment efficiency of about 98%. The study also assesses the effects of the UV intensity and the treatment time needed to remove the target pollutant.

You do not currently have access to this content.