Abstract

Adsorption (ADS) and dielectrophoresis (DEP) techniques were combined (ADS/DEP) to efficiently remove As(V) in industrial wastewater. Fly ash, activated carbon, corncob and plant ash were tested to determine the best adsorbent by their adsorption capacity. Plant ash showed the highest adsorption capacity compared with the others. Different parameters such as solution pH and adsorbent dose were explored. The maximum As(V) removal efficiency was 91.4% at the optimized conditions (pH 9.0, adsorbent dose 5 g/L) when the initial concentration of As(V) was 15 mg/L. With the ADS/DEP technique, the plant ash particles with adsorbed As(V) were trapped on the electrodes in a DEP device. The ADS/DEP process could increase the removal efficiency of As(V) to 94.7% at 14 V even when the initial concentration of As(V) was 15 mg/L. And the residual concentration of As(V) decreased to 0.34 mg/L after two series of the ADS/DEP process. The adsorbents before and after DEP were examined by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. After the DEP process, the weight percentage of As(V) on the adsorbent surface increased to 0.96% from 0.5%. The ADS/DEP process could be a new efficient way to remove arsenic pollutant at high concentrations.

You do not currently have access to this content.