Due to unavailability of sufficient discharge data for many rivers, an appropriate approach is required to provide accurate data for estimating discharge in ungauged watersheds. In this study, Global Land Data Assimilation System (GLDAS) datasets were integrated with Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) to simulate the outlet river discharge in Polroud watershed, located in the North of Iran. Temperature and precipitation products generated by GLDAS were calibrated using regression analysis based on observation data for the period of 2004–2006. Then, river discharge was simulated by using HEC-HMS based on two different datasets (GLDAS meteorological product and gauged data) on the scale of the basin for the same period. The results clearly indicated that the forcing of GLDAS data into HEC-HMS model leads to promising results with acceptable correlation with observed data. Although, in comparison with direct GLDAS runoff products, the proposed approach improved the accuracy of river discharge, the problem of underestimation still reduces the expected accuracy. Because of global accessibility, GLDAS datasets would be a good alternative in ungauged or poorly gauged watersheds.

You do not currently have access to this content.