The current paper reports the investigation of two transient-based techniques for leak detection in water pipe systems using physical data collected in the laboratory and in quasi-field conditions. The first is the analysis of the leak reflected wave during a transient event and the second is inverse transient analysis (ITA). This was approached through the development of an inverse transient analysis tool and the collection of transient data for the testing and validation of this model. Two experimental programmes were carried out at Imperial College and in cooperation with Thames Water for the validation and testing of these techniques. Evaluation of the presence, location and size of leaks was carried out using the collected data. Transient-based techniques have been shown to be successful in the detection and location of leaks and leak location uncertainties depended on the leak size and location, flow regime and location where the transient event was generated. These leak detection methods are very promising for identifying the general area of the trunk main with leakage, and can be combined with other leak location techniques (e.g. acoustic equipment) to more precisely pinpoint the leak position. Transient-based techniques are particularly important for the diagnosis, monitoring and control of existing water supply systems, not only to detect leaks, but also to better understand the causes of pipe bursts and accidents, particularly when these are due to natural transient events.

This content is only available as a PDF.
You do not currently have access to this content.