Abstract

Dissolved organic nitrogen derived from soluble microbial products (SMPs-DON) generated during the drinking water biological treatment process poses a great threat to water supply safety due to the potential carcinogenic risk. To further study the production mechanism and characteristics of SMPs-DON in drinking water biological aerated filtration (BAF), Illumina MiSeq sequencing is applied to characterize the microbial community. In addition, an excitation–emission matrix combined with the parallel factor model (EEM-PARAFAC) and gel filtration chromatography (GFC) are used to analyze the component and molecular weight (MW) distribution of the SMPs-DON. Results showed that the production of SMPs-DON in drinking water BAF can be explained using Illumina MiSeq sequencing from the perspective of the microbial community. Also, according to the EEM-PARAFAC analysis, the fluorescence intensity scores of fulvic-like and humic-like substances were almost unchanged, whereas the scores of protein-like substances first increased and then decreased, which was consistent with the variation in the DON concentration. SMPs produced initially primarily consisted of macromolecules with MW >20 kDa, and then they were degraded and small molecular SMPs with MW <5 kDa accumulated. This study provides theoretical guidance and technical support for ensuring drinking water safety and reducing secondary pollution risks from drinking water biological treatment.

You do not currently have access to this content.