A bio-monitoring system for toxicants in water has been developed and verified for actual applications. This system is based on the motionality of five Acheilognathus lanceolata, a fish known to be very sensitive to toxic substances, moving around in an aquarium. Their movements are continuously monitored with a charge coupled device (CCD) camera and analyzed to find and quantify any abnormal behavior in their motional characteristics in comparison with the pre-acquired data. That is, the images of fish captured by a CCD camera are digitalized to identify the location of fish in a constant time interval and the locations of each fish were then analyzed mathematically with a personal computer using the equations proposed to determine the motional characteristics such as floatness, fledness and mobility(agility). These data are then converted by means of fuzzy estimation to an index value, defined as the contamination index (CI), by which the system provides the information about the overall toxic strength of the toxicant in the water flowing into the aquarium. If the fish are exposed to toxicant(s), the CI value will be proportional to the strength of its toxicity. The pilot test was performed in a water treatment plant for six months in order to verify the reproducibility of the system over the unstable conditions such as highly turbid water after rainfall as well as in normal conditions. The test results revealed that this monitoring system has good reproducibility and sensitivity, proving our approach, described in this paper, is reliable. As a result, this approach seems to enable us to make a quick and easy detection of toxic substances contained in water, therefore, this system can be applied to a source of water supply as a toxicant watching system.

This content is only available as a PDF.