Multivariate Consumption Profiling (MCP) is a methodology to analyse the readings made by Intelligent Meter (IM) systems. Even in advanced water companies with well supported IM, full statistical analyses are not performed, since no efficient methods are available to deal with all the data items. Multivariate Analysis has been proposed as a convenient way to synthesise all IM information. MCP uses Factor Analysis, Cluster Analysis and Discriminant Analysis to analyse data variability by categories and levels, in a cyclical improvement process. MCP obtains a conceptual schema of a reference population on a set of classifying tables, one for each category. These tables are quantitative concepts to evaluate consumption, meter sizing, leakage and undermetering for populations and groupings and individual cases. They give structuring items to enhance “traditional” statistics. All the relevant data from each new meter reading can be matched to the classifying tables. A set of indexes is computed and thresholds are used to select those cases with the desired profiles. The paper gives an example of a MCP conceptual schema for five categories, three variables, and five levels, and obtains its classifying tables. It shows the use of case profiles to implement actions in accordance with the operative objectives.

This content is only available as a PDF.